47 хромосом у человека что это


Лишняя хромосома у человека. Хромосомные аномалии

Организм человека – это сложная многоплановая система, которая функционирует на различных уровнях. Для того, чтобы органы и клетки могли работать в правильном режиме, в конкретных биохимических процессах должны участвовать определённые вещества. Для этого необходимо прочное основание, то есть корректная передача генетического кода. Именно заложенный наследственный материал управляет развитием зародыша.

Однако в наследственной информации иногда возникают изменения, которые появляются в крупных объединениях или же касаются отдельных генов. Подобные ошибки называют мутациями генов. В отдельных случаях такая проблема относится к структурным единицам клетки, то есть к целым хромосомам. Соответственно, в этом случае ошибку называют мутацией хромосом.

Каждая человеческая клетка в норме содержит одинаковое количество хромосом. Они объединены одинаковыми генами. Полный набор составляет 23 пары хромосом, но в половых клетках их в 2 раза меньше. Это объясняется тем, что при оплодотворении слияние сперматозоида и яйцеклетки должно представлять полноценную комбинацию всех необходимых генов. Их распределение происходит не рандомно, а в строго определённом порядке, причём такая линейная последовательность абсолютно одинакова для всех людей.

Хромосомные мутации способствуют изменению их числа и структуры. Таким образом, может появиться лишняя хромосома или, наоборот, их будет не хватать. Этот дисбаланс может быть причиной прерывания беременности либо поспособствует возникновению хромосомных заболеваний.

Типы хромосом и их аномалии

Хромосома – это переносчик наследственной информации в клетке. Она представляет собой удвоенную молекулу ДНК в комплексе с гистонами. Формирование хромосом происходит в профазе (к моменту деления клеток). Однако в период метафазы их удобнее изучать. Хромосомы, которые состоят из двух хроматид, то есть соединены первичной перетяжкой, располагаются на экваторе клетки. Первичная перетяжка делит хромосому на 2 участка одинаковой либо разной длины.

Различают следующие типы хромосом:

  • метацентрические – с плечами равной длины;
  • субметацентрические – с плечами неравной длины;
  • акроцентрические (палочковидные) – с одним коротким, а другим длинным плечами.

Аномалии бывают относительно крупными и небольшими. Методы исследования меняются в зависимости от этого параметра. Некоторые обнаружить при помощи микроскопа невозможно. В таких случаях применяют метод дифференциального окрашивания, но только тогда, когда затронутый участок исчисляется в миллионах нуклеотидов. Только благодаря установлению нуклеотидной последовательности можно выявить небольшие мутации. А более крупные нарушения приводят к ярко выраженному воздействию на человеческий организм.

При отсутствии одной из хромосом аномалия называется моносомией. Лишняя хромосома в организме – трисомия.

Хромосомные болезни

Хромосомные болезни – генетические патологии, которые происходят в результате анормальности хромосом. Они возникают вследствие изменения числа хромосом или больших перегруппировок

Когда ещё медицина была далеко от современного уровня развития, считалось, что у человека 48 хромосом. И только в 1956 году их удалось правильно подсчитать, пронумеровать и выявить связь между нарушением числа хромосом и некоторыми наследственными болезнями.

Спустя 3 года французским учёным Ж. Леженом было обнаружено, что нарушение у людей умственного развития и устойчивость к инфекциям напрямую связаны с геномной мутацией. Речь шла о лишней 21 хромосоме. Она одна из самых маленьких, но в ней сосредоточено большое количество генов. Лишняя хромосома наблюдалась у 1 из 1000 новорождённых. Эта хромосомная болезнь на сегодняшний день является наиболее изученной и называется синдромом Дауна.

В том же 1959 году было изучено и доказано, что наличие у мужчин лишней Х-хромосомы приводит к болезни Кляйнфельтера, при которой человек страдает умственной отсталостью и бесплодием.

Однако, несмотря на то что хромосомные аномалии наблюдаются и изучаются довольно давно, даже современная медицина не способна лечить генетические болезни. Но довольно модернизированы методы диагностики таких мутаций.

Причины возникновения лишней хромосомы

Аномалия является единственной причиной для возникновения 47 хромосом вместо положенных 46. Специалистами в области медицины было доказано, что главная причина возникновения лишней хромосомы – возраст будущей мамы. Чем старше беременная, тем больше вероятность нерасхождения хромосом. Только по этой причине женщинам рекомендуется рожать до 35 лет. В случае возникновения беременности после наступления этого возраста следует пройти обследование.

К факторам, которые способствуют появлению лишней хромосомы, относят уровень аномалии, возросший в целом в мире, степень экологического загрязнения и многое другое.

Существует мнение, что лишняя хромосома возникает, если были в роду аналогичные случаи. Это всего лишь миф: исследования показали, что родители, чьи дети страдают от хромосомного заболевания, имеют совершенно здоровый кариотип.

Диагностика появления ребёнка с хромосомной аномалией

Распознавание нарушения числа хромосом, так называемый скрининг анеуплоидии, выявляет у эмбриона недостаток или переизбыток хромосом. Беременным женщинам старше 35 лет рекомендуется пройти процедуру получения образца околоплодных вод. Если будет обнаружено нарушение кариотипа, то будущей маме будет необходимо прервать беременность, так как родившийся ребёнок всё жизнь будет страдать тяжелым заболеванием при отсутствии эффективных методов лечения.

Нарушение хромосом в основном имеет материнское происхождение, поэтому следует проводить анализ не только клеток эмбриона, но и веществ, которые образуются в процессе созревания. Такую процедуру называют диагностикой генетических нарушений по полярным тельцам.

Синдром Дауна

Учёным, впервые описавшим монголизм, является Даун. Лишняя хромосома, болезнь генов при наличии которой обязательно развивается, широко изучена. При монголизме возникает трисомия по 21 хромосоме. То есть у больного человека вместо положенных 46 получается 47 хромосом. Основной признак – отставание в развитии.

Дети, у которых наблюдается наличие лишней хромосомы, испытывают серьёзные трудности усвоения материала в школьном учреждении, поэтому им необходима альтернативная методика обучения. Помимо умственного, наблюдается отклонение и в физическом развитии, а именно: раскосые глаза, плоское лицо, широкие губы, плоский язык, укороченные или расширенные конечности и стопы, большое скопление кожи в области шеи. Продолжительность жизни в среднем достигает 50 лет.

Синдром Патау

К трисомии также относится синдром Патау, при котором наблюдается 3 копии 13 хромосомы. Отличительным признаком является нарушение деятельности ЦНС или её неразвитость. У больных наблюдаются множественные пороки развития, возможны в том числе врождённые заболевания сердца. Больше 90 % людей с синдромом Патау умирают в первый год жизни.

Синдром Эдвардса

Эта аномалия, как и предыдущие, относится к трисомии. В данном случае речь идёт о 18 хромосоме. Синдром Эдвардса характеризуется различными нарушениями. В основном у больных наблюдается костная деформация, изменённая форма черепа, проблемы с органами дыхания и сердечно-сосудистой системой. Продолжительность жизни обычно около 3 месяцев, но некоторые младенцы доживают до года.

Эндокринные болезни при аномалии хромосом

Помимо перечисленных синдромов хромосомной анормальности, существуют и другие, при которых также наблюдается численная и структурная аномалия. К таким болезням относятся следующие:

  1. Триплоидия – довольно редкое расстройство хромосом, при котором их модальное число равно 69. Беременность обычно заканчивается ранним выкидышем, но при выживании ребёнок живёт не более 5 месяцев, наблюдаются многочисленные врождённые дефекты.
  2. Синдром Вольфа-Хиршхорна – также одна из редчайших хромосомных аномалий, которая развивается благодаря делеции дистального конца короткого плеча хромосомы. Критической областью этого расстройства является 16,3 на хромосоме 4р. Характерные признаки – проблемы в развитии, задержки в росте, судороги и типичные черты лица
  3. Синдром Прадера-Вилли – заболевание встречается очень редко. При такой аномальности хромосом 7 генов или их некоторые части на 15 отцовской хромосоме не функционируют или вовсе удалены. Признаки: сколиоз, косоглазие, задержка физического и интеллектуального развития, быстрая утомляемость.

Как воспитывать ребёнка с хромосомным заболеванием?

Воспитывать ребёнка с врождёнными хромосомными заболеваниями оказывается непросто. Для того чтобы облегчить свою жизнь, необходимо придерживаться некоторых правил. Во-первых, сразу следует преодолеть отчаяние и страх. Во-вторых, не нужно тратить время на поиске виновного, его просто нет. В-третьих, важно определиться с тем, какая помощь требуется ребёнку и семье, после чего обращаться к специалистам за медицинской и психолого-педагогической помощью.

В первый год жизни диагностика крайне важна, так как в этот период развивается двигательная функция. С помощью профессионалов ребёнок быстрее приобретёт моторные способности. Необходимо объективно обследовать малыша на патологию зрения и слуха. Также ребёнок должен наблюдаться у педиатра, психоневролога и эндокринолога.

Родителям рекомендуется вступить в специальную Ассоциацию для того, чтобы получить ценные практические советы от людей, которые преодолели подобную ситуацию и готовы поделиться.

Носитель лишней хромосомы обычно дружелюбен, что облегчает его воспитание, также он по мере своих сил старается заслужить одобрение взрослого. Уровень развития особенного малыша будет зависеть от того, насколько упорно будут его обучать основным навыкам. Больные дети хоть и отстают от остальных, но требуют к себе много внимания. Всегда необходимо поощрять самостоятельность ребёнка. Прививать навыки самообслуживания следует на собственном примере, и тогда результат не заставит себя долго ждать.

Дети с хромосомными заболеваниями наделены особыми талантами, который необходимо раскрыть. Это могут быть занятия музыкой или рисование. Важно развиваться речь малыша, играть в активные и развивающие моторику игры, читать, а также приучать к режиму и аккуратности. Если проявить к ребёнку всю свою нежность, заботу, внимательность и ласку, он ответит тем же.

Можно ли вылечить?

На сегодняшний день излечить хромосомные болезни невозможно; каждый предлагаемый метод является экспериментальным, а их клиническая эффективность не доказана. Добиться успехов в развитии, социализации и приобретении навыков помогает систематическая медицинская и педагогическая помощь.

Больной ребёнок должен всё время наблюдаться у специалистов, так как медицина вышла на тот уровень, при котором способна предоставить необходимое оборудование и различные виды терапии. Педагоги же применят современные подходы в обучении и реабилитации малыша.

fb.ru

Сколько Хромосом у Человека Здорового? [Обновлено]

Внешний вид, умственные и физические способности — все это заложено в геноме человека до рождения. Однако из-за различных нарушений, факторов окружающей среды и наследственности иногда происходят отклонения в цепочке ДНК. Из-за неправильного хромосомного набора велик риск развития синдрома Дауна у еще не рожденного ребенка. Сколько хромосом у человека здорового и больного? Об этом далее.

Внимание! Материал носит лишь ознакомительный характер. Не следует прибегать к описанным в нем методам лечения без предварительной консультации с врачом.

Сколько хромосом у человека здорового

Однажды ученые задумались: что определяет рост человека, количество рук, ног, пальцев, цвет волос, физическую силу и способности к обучению?

Сегодня люди знают: информация, необходимая для формирования и развития организма, содержится в длинной цепочке генов, которая состоит из дезоксирибонуклеиновой (ДНК), рибонуклеиновой (РНК) кислот и белков.

В этой цепи находится около 3,1 млрд генов, однако только 1,5% несут в себе основные сведения о будущем человека. Остальную часть ДНК называют мусорной, поскольку она не кодирующая.

Что такое хромосома? Хромосома — это структурная единица генома, которая состоит из нуклеиновых кислот и белков. Образуется из одной, но чрезвычайно длинной молекулы ДНК, предназначается для хранения и передачи основной наследственной информации.

Это понятие впервые предложил немецкий ученый Генрих Вильгельм Готфрид в 1888 году. В буквальном переводе «хромосома» означает ‘окрашенное тело’, так как эта структура хорошо реагирует на красители при исследовании.

В начале XX века была выдвинута теория, что именно хромосомы отвечают за наследственность. В ходе экспериментов на плодовой мушке выявили, что в нуклеопротеидной единице локализовано огромное число генов в определенной последовательности.

Здоровый человек имеет 46 хромосом в 23 парах. Двадцать две пары отвечают за определенный набор генов (аутосомные), а двадцать третья — за пол человека. Одну из половых хромосом мы наследуем от матери, вторую — от отца.

Если последняя пара в геноме состоит из двух XX хромосом, родится девочка, если же XY — мальчик.

Синдром Дауна: количество хромосом у человека

К сожалению, уже на стадии зарождения плода в геноме человека может появиться патология, которая приводит к развитию синдрома Дауна. Вероятность рождения ребенка с таким отклонением зависит от многих факторов: наследственности, возраста яйцеклетки и нарушения во время ее формирования.

Читайте также: Ученые обнаружили «гены смерти»

Прослеживается зависимость вероятности появления синдрома у ребенка с возрастом роженицы:

  • 20–25 лет — 1:1562;
  • 25–30 — 1:1000;
  • 35–39 — 1:214;
  • 45 и выше — 1:19.

Возраст отца также влияет на вероятность развития отклонений у эмбриона. Это особенно заметно, если мужчине более сорока двух лет. Возможность появления патологий не зависит от расы и экономического благосостояния людей.

Чем обусловлено развитие синдрома Дауна? Он возникает из-за изменений порядка и количества хромосом. Наиболее частая причина — появление третьей копии структурной единицы в двадцать первой паре хромосом.

Таким образом, у человека, страдающего синдромом Дауна, 47 хромосом вместо 23-х пар.

Существует еще два типа этой болезни:

  • Мозаицизм — это наиболее легкий вид патологии, который возникает в 5% случаев. Он обусловлен неразъединением хромосом при формировании гамет (половых клеток) родителей. Из-за этого во время развития плода клетки некоторых тканей и внутренних органов будут развиваться с отклонениями.
  • Транслокация. Причина этой разновидности синдрома — перенос 21 хромосомы или ее части на другие структурные единицы. Вероятность развития данной патологии — 4%.

Впервые подробное описание болезни сделал врач Джон Лэнгдон Даун в 1862 году. Он считал ее одним из видов психического расстройства, которое сказывается на внешнем виде человека.

До того момента, пока в 1959 году не были названы точные причины развития недуга, синдром Дауна был тесно связан с расизмом. В то время патология называлась «монголизмом» из-за формирования у больных складки над верхним веком, сходной с эпикантусом монголоидных рас. В 1965 году это название было упразднено, но, несмотря на это, в некоторых современных медицинских справочниках синдром Дауна именуют не иначе как «монголизм».

Для людей с синдромом Дауна характерны определенные внешние черты:

  1. Аномально короткий череп.
  2. Плоский затылок.
  3. Складка на шее у младенцев.
  4. Короткие руки и ноги.
  5. Постоянно открытый рот ввиду слабости мышц.
  6. Плоский и маленький нос.
  7. Косоглазие.
  8. Гиперподвижность суставов.
  9. Короткая шея.
  10. Деформированная грудная клетка.

Кроме того, люди с лишней хромосомой часто страдают от болезней сердечно-сосудистой системы, лейкоза, а также серьезно отстают в физическом и умственном развитии. В 75% случаев наблюдается имбецильность, каждый пятый страдает от идиотии, а каждый двадцатый — от дебильности.

При легкой форме умственной отсталости дети с синдромом Дауна обучаемы. Если применять специальные методики, они могут научиться считать, писать, внятно и членораздельно говорить. По сути, если приложить достаточно усилий и времени, больные могут делать практически все то же самое, что и здоровые люди.

К сожалению, избежать развития синдрома, если он уже определен, невозможно. Поэтому после диагностирования патологии 90% женщин прибегают к абортам. Надеемся, что в скором времени генетика позволит ставить на место и удалять лишние хромосомы человека, а также избавляться от других генетически аномалий.

Читайте также: Модель с синдромом Дауна: Мы можем быть красивыми и сексуальными

Автор: кандидат медицинских наук Анна Ивановна Тихомирова

Рецензент: кандидат медицинских наук, профессор Иван Георгиевич Максаков

www.nur.kz

Тайна 47-й хромосомы

Ежегодно в Новосибирске рождается порядка двадцати детей с синдромом Дауна. Статистика свидетельствует: на семьсот детей — один "дауненок"
Почти девяносто процентов таких новорожденных — "отказники". Родители, услышав диагноз, отрекаются от ребенка, оставляя его на попечение государства.

Даун-синдром один из самых страшных диагнозов. Эта болезнь известна врачам с 1866 года. Английский врач Лангдон Даун обратил внимание на девочку с характерными чертами лица и отставанием в развитии. После этого врачи стали выявлять очень похожих друг на друга детей. У них своеобразный разрез глаз, специфичные формы переносицы, ушных раковин, увеличенный язык, часто выпадающий изо рта, отставание в развитии. В двадцатом веке генетики определили, что у подобных детей имеются количественные изменения хромосом. У нормального человека сорок шесть, а у дауна на одну больше. Откуда берется лишняя хромосома, выбрасывающая крошечного человечка на обочину жизни, пока одному Богу известно. Предугадать рождение дауна практически нельзя. На четвертом месяце беременности можно сделать пробу околоплодной жидкости, проверить кровь но сто- процентной гарантии нет.

Официальной статистики даунов, проживающих в Новосибирске и Новосибирской области, никто не ведет. В этом году удалось сосчитать "даунят" в городских семьях, тех, от кого не отказались родители. Таких оказалось сто шестьдесят семь. Но в основном они живут в интернатах, и, как утверждают специалисты, количество больных синдромом Дауна в России приближается к численности населения небольшого города.

В развитых странах такие малыши, по крайней мере теоретически, имеют равные права со своими здоровыми сверстниками, так же получают образование. В России они — отверженные. Год назад в Новосибирске создали общественную организацию "Даун-синдром". Инициатором стала мать ребенка-дауна Татьяна Есипова. Цель "ДС" - добиться, чтобы дети-инвалиды имели право на полноценную человеческую жизнь. Возможно ли это?

Соня Макагон и ее рисунки

- Ни с моей стороны, ни со стороны мужа никаких патологий никогда не было, — рассказывает Татьяна Павловна, — на шестнадцатой неделе я сдала анализы. Врачи сказали, что все в порядке, ребенок здоров. Через четыре недели я родила. Когда мне сказали, что у меня даун, я не поверила. Потом мне стало страшно, казалось, весь мир перевернулся. Муж предложил мне выбор: "Или я, или он". Отказаться от своего малыша я не смогла. Забрала Павлика — так зовут моего сына — и стала изучать литературу. Иллюзий строить было не на чем. Синдром Дауна неизлечим. Однако известно: если постоянно заниматься с ребенком, учить его говорить, проводить курс лечения, можно приспособить его к окружающему миру. Полноценным человеком, он не станет, но жить в нашем обществе сможет. Четыре года я добивалась создания нашего общества, знакомилась с родителями "даунят". Теперь мы объединились в одну семью и пытаемся помочь больным детям. За последний год мы сумели доказать, что хотя дауны и не могут освоить технические науки, зато гуманитарные им по силам. Три месяца назад на городском конкурсе "Калейдоскоп" рисунки Сони Макагон получили высокую оценку жюри. В искусстве рисования она намного обошла многих полноценных сверстников.

Судьба Сониной мамы ненамного отличается от судьбы Татьяны Есиковой. Она тоже воспитывает дочку одна — муж не выдержал и ушел из семьи, оставив не только больную Соню, но и здоровую — четырехлетнюю Сашу.

Год назад Соню стали учить рисовать. Карандаш выскальзывал из слабых детских рук. Точки, черточки, круги. Девочка не плакала, старалась и уже через четыре месяца сталавыводить на бумажном листе плавные линии. Затем получилась собака, домик, петух. Сейчас Соня посещает детский сад для обычных детей. Правда, как говорит ее мама, в школу ее вряд ли возьмут. Не хотят учителя видеть даунов за партами. Сонина мама не сдается, как не падает духом и маленькая девочка.

- Одна из самых насущных проблем сегодня — это устроить "дауненка" в обычную школу, — делится наболевшим Есикова.- Директора школ категорически не желают видеть даунов за партами. Как правило, отвечают одно и то же: "Даун не может освоить школьную программу, отправляйте их во вспомогательные классы". Они не понимают, что если больной ребенок будет постоянно находиться среди подобных себе детей, прогресс в обучении равен нулю. Даун должен наблюдать за поведением здоровых детей, учиться у них. Опыт последних лет доказывает, что ребенка с диагнозом лишней хромосомы можно научить многому: говорить, писать ориентироваться в городе.

Люди с синдромом Дауна развиваются так же, как все остальные, только гораздо медленнее. Постепенно у них повышается уровень полезных навыков и поведения. Таким образом, это позволяет им со временем даже вступать в брачные отношения. Однако из этого не следует делать вывод, что все такие больные должны непременно вести супружескую жизнь. Нужно лишь иметь в виду, что, достигнув определенного возраста, дауны могут быть социально адаптированы в достаточной мере.

- Почти девяносто процентов даунов бесплодны. Более того, очень немногие из них вообще вступают в интимную близость, — говорит Татьяна Есикова. — Однако исключить, что у такой супружеской пары может быть ребенок — нельзя. Заводить детей таким людям, вероятно, все же не стоит, но жизнь вдвоем дает свои преимущества. Прежде всего, каждый будет иметь доброго друга, с которым сможет в полной мере разделить свои переживания и трудности обучения социальным навыкам. Совместная жизнь также является огромным стимулом для развития словарного запаса, а также интересов обоих супругов с синдромом Дауна. Большое значение имеет и взаимная симпатия, которую они испытывают друг к другу. Она уравновешивает их личность, придает им самостоятельность и силу для того, чтобы справляться с трудностями... Несколько месяцев назад мы выпустили брошюру, в которой достаточно полно описано, как воспитать "дауненка". Вообще самое главное — это терпение. Тем более мы надеемся, что наука все же изобретет лекарство, и наши дети смогут стать здоровыми.

Пока наука не изобрела "убийцу" лишней хромосомы, но если дауны рождаются, значит, нашему обществу это необходимо. Ведь дауны очень счастливые люди. Они не могут совершить зла, потому что не понимают, что это такое. Простодушные и наивные, такими они остаются до конца жизни. Они живут в своем, только им понятном мире, куда иногда пускают и нас.

Среди новосибирских "даунят" есть даже такие, кто умеет писать стихи.

Вот еще одно стихотворение, написанное девочкой с болезнью Дауна

"Были у папы друзья-мужики.
Тьфу, а остался он один (Дик).
Ласковый, большой
Наш защитник и друг.
Был он папин, а стал он нашим.
Любимым, хорошим и нежным.
У собаки есть душа,
А у человека? Вот вопрос".

Это стихи из дневника девочки с болезнью Дауна. У нее умер отец. Они остались с мамой и бабушкой. Дик — это их собака. Мама не захотела, чтобы мы называли фамилию девочки.

Марина КОРНИЛОВА
Вечерний Новосибирск

О том же самом читайте на английской версии ПРАВДЫ.Ру: https://www.pravdareport.com/science/19/94/379/10486_syndrome.html

www.pravda.ru

«Откуда берется лишняя хромосома у детей с синдромом Дауна?» – Яндекс.Кью

Трисомия

Трисомия — это наличие трёх гомологичных хромосом вместо пары (в норме). Причиной подавляющего большинства трисомий у человека являются ошибки расхождения хромосом при оогенезе, причём наибольший вклад дают ошибки в мейозе I по сравнению со вторым мейотическим делением. Вероятность трисомий у потомства повышается с возрастом матери

Наиболее часто встречающейся у человека является трисомия по 16-й хромосоме (более одного процента случаев беременности), следствием этой трисомии является спонтанный выкидыш в первом триместре беременности.

Единственной жизнеспособной трисомией по аутосоме у человека является трисомия по хромосоме 21, вызывающая синдром Дауна. Трисомики по хромосомам 13 (синдром Патау) и 18 (синдром Эдвардса) могут дожить до рождения, но характеризуются значительными нарушениями развития и ранней постнатальной смертностью. Трисомии по другим аутосомам приводят к ранней эмбриональной летальности. Характерно, что хромосомы 13, 18 и 21 являются хромосомами, занимающие три последних места по числу генов среди аутосом

Частота новорождённых с трисомией по 21 хромосоме в европейских странах в 1990—2009 годах составляло 11.2 случаев на 10 000 новорождённых, по 18 хромосоме — 1.04 случаев на 10 000, по 13 хромосоме — 0.48 случая на 10 000[https://ru.m.wikipedia.org/wiki/%D0%90%D0%BD%D0%B5%D1%83%D0%BF%D0%BB%D0%BE%D0%B8%D0%B4%D0%B8%D1%8F#cite_note-pmid22713804-5

Нарушения плоидности у человека

У человека, как и у подавляющего большинства многоклеточных животных, большая часть клеток диплоидна. Гаплоидны только зрелые половые клетки, или гаметы. Нарушения плоидности (как анеуплоидия, так и более редкая полиплоидия) приводят к серьёзным болезненным изменениям. Примеры анеуплоидии у человека: синдром Дауна — трисомия по 21-й хромосоме (21-я хромосома представлена тремя копиями), синдром Клайнфельтера — избыточная X хромосома (XXY), синдром Шерешевского — Тёрнера — моносомия по одной из половых хромосом (X0). Описаны также трисомия по X хромосоме и случаи трисомии по некоторым другим аутосомам (помимо 21-й). Примеры полиплоидии редки, однако известны как абортивные триплоидные зародыши, так и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней) и диплоидно-триплоидные мозаики.

yandex.ru

какие бывают трисомии? — Рамблер/женский

СодержаниеТрисомии — хромосомные болезниСиндром Эдвардса: 3 месяца жизниСиндром Патау: несчастливая хромосомаСиндром Дауна: солнечные детиДругие трисомииЛечение трисомий

Человеческий организм — не машина, и в нем случаются сбои на всех уровнях: от органного до молекулярного. Особенно опасны некоторые поломки в геноме. Природа обеспечила наш вид защитными механизмами: даже если зачатие плода с тяжелыми генетическими аномалиями произойдет, с высокой долей вероятности в I триместре организм избавится от него. Но существуют тяжелые геномные патологии, при которых дети рождаются живыми, и тогда только от врачей и окружающих людей зависит, как этот ребенок проживет свою, иногда очень короткую, жизнь. В Международный день людей с синдромом Дауна MedAboutMe разбирается, какие виды трисомий, кроме синдрома Дауна, существуют и какие шансы у таких детей на выживание.

Трисомии — хромосомные болезни

Хромосомы у людей бывают двух типов: половые хромосомы, которые различаются у мужчин (XY) и женщин (XX), и аутосомы — парные хромосомы, имеющиеся у обоих полов. Для правильного развития человека, начиная с момента зачатия, важно все: и правильность строения хромосом, и их количество. Если нарушено строение, говорят о хромосомных мутациях, а если количество не соответствует норме — то о мутациях на уровне генома. Хотя отдельные хромосомные нарушения встречаются нечасто, а некоторые из них смело можно отнести к редким заболеваниям, все же в целом хромосомные аномалии фиксируются у 6-7 новорожденных из каждой тысячи.

Подавляющее большинство числовых нарушений хромосомного набора приводит к аномальному развитию плода, и организм избавляется от такого эмбриона на ранних сроках. Эксперты утверждают, что четверть спонтанных выкидышей в I триместре — это как раз результат трисомий. Но при некоторых видах анеуплоидии (утрата или, наоборот, появление дополнительной хромосомы) женщины донашивают ребенка до рождения.

Нас интересуют трисомии аутосом — ситуации, когда имеется дополнительная хромосома. Чаще всего это происходит на стадии образования яйцеклеток и сперматозоидов из-за неполного расхождения хромосом, но бывают и другие механизмы развития данной патологии. Согласно последним данным, существует даже мутация, которая существенно повышает риск передачи аномального числа хромосом потомству. В итоге, когда после оплодотворения наборы хромосом отца и матери объединяются, получившаяся клетка будет иметь трисомию — одну хромосому, как и положено, от одного родителя, и две хромосомы под тем же номером — от другого.

Трисомии могут возникать по любой из 22 аутосом человека. Но только для семи из них возможно рождение живого младенца, это 21, 18, 13, 14, 8, 9 и 22 хромосомы. В остальных случаях плод не выживает — ученые обнаруживали такие нарушения только при самопроизвольных выкидышах.

Все случаи трисомий выявляются сразу после рождения малыша. Такие дети обладают характерными чертами внешности, обычно имеют многочисленные и выраженные пороки развития, как внешних, так и внутренних органов, у них отмечается значительная задержка психомоторного развития и существенные дефекты интеллекта. Дети с большинством трисомий живут очень недолго.

Синдром Эдвардса: 3 месяца жизни

Синдром Эдвардса — результат трисомии по 18 хромосоме. Это редкое заболевание, которое встречается с частотой 1:2500-6766 среди живорожденных детей. Девочки с синдромом Эдвардса рождаются в 3 раза чаще, чем мальчики. Также доказано, что с возрастом матери риск рождения ребенка с этим заболеванием растет, впрочем, не так сильно, как в случае синдрома Дауна. Вероятность родить малыша с синдромом Эдвардса у женщин старше 45 лет составляет 0,7%.

В 70% случаев трисомии по 18 хромосоме происходит самопроизвольный выкидыш еще в I триместре беременности. Половина живорожденных детей погибает в течение первой недели жизни. Лишь 5% доживают до своего первого дня рождения. Но при этом у них обычно наличествуют множественные тяжелые пороки развития, включая скелетные и черепно-лицевые аномалии, разнообразные патологии сердца и магистральных сосудов, нарушения развития пищевода, мочевыводящей системы, желудочно-кишечного тракта. Живут такие дети в среднем не более 3 месяцев, некоторые доживают до года.

Синдром Патау: несчастливая хромосома

Синдром Патау развивается при трисомии по 13 хромосоме, которая встречается в 1 случае на 7-14 тысяч новорожденных младенцев. Мальчики и девочки с синдромом Патау рождаются с одинаковой частотой. Существует связь между риском зачатия малыша с трисомией по 13 хромосоме и возрастом матери.

Младенцы, которым удалось дожить до появления на свет, имеют многочисленные тяжелые пороки развития. Это патологии центральной нервной системы вкупе с микроцефалией, болезни глаз, деформация и недоразвитие лицевых отделов, в 80% случаев — тяжелые пороки развития сердца и сосудов, полидактилия, болезни поджелудочной железы и селезенки, почек и половых органов. У детей отмечается задержка умственного развития и глубокая идиотия. Раньше подавляющее большинство детей умирало еще до 1 года. Но сегодня, по мере развития медицины, продолжительность жизни малышей с синдромом Патау растет. В развитых странах в наше время до 5 лет доживает уже 15% детей, а до 10 лет — от 2 до 3%.

Синдром Дауна: солнечные дети

Синдром Дауна развивается при полной трисомии по 21 хромосоме. Мальчики и девочки с этой патологией рождаются с одинаковой частотой, а в среднем на свет появляется 1 ребенок с синдромом Дауна на 700 живорожденных детей. Достоверно известно, что на вероятность зачатия ребенка с такой трисомией значительное влияние оказывает возраст матери. Чем старше женщина, тем выше риски.

Как и всех обладателей трисомий, детей с синдромом Дауна отличают характерные внешние черты, по которым «солнечного» малыша можно узнать, вне зависимости от его национальности. Как и в случае других хромосомных болезней из этой группы, такие дети имеют множество патологий, нарушения умственного развития и определенных физиологических особенностей. Но, в отличие от других анеуплоидий, эта патология может развиваться без тяжелых пороков внутренних органов. И тогда такие дети имеют все шансы прожить достаточно долгую жизнь — до 60-65 лет, хоть и демонстрируя признаки раннего старения. Такой срок, сравнимый с продолжительностью жизни здорового человек — победа современной медицины, науки и, конечно, показатель развития общества, ведь еще 30-35 лет назад средняя продолжительность жизни человека с синдромом Дауна не превышала 25 лет.

Вырастая, люди с синдромом Дауна способны и сами заводить детей. Большинство мужчин бесплодны, но не все, а среди женщин могут иметь детей примерно половина. И каждый второй ребенок, рожденный матерью с трисомией по 21-й хромосоме, будет здоровым.

Другие трисомии

Другие трисомии, при которых дети имеют шанс родиться живыми, не столь известны, как вышеперечисленные три синдрома:

Трисомия по 8 хромосоме: встречается в 1 случае на 50 тысяч успешных родов. Среди проявлений патологии — макроцефалия, аномалии скелета, врожденные пороки развития мочевой системы, пороки сердца и сосудов, задержка речевого и психомоторного развития. Известны случаи, когда люди с такой патологией доживали до 17 лет. Трисомия по 9 хромосоме: микроцефалия, тяжелые нарушения опорно-двигательного аппарата, патологии сердца и сосудов, почек, желудочно-кишечного тракта. Большинство таких детей погибает в возрасте до 4 месяцев. Трисомия по 14 хромосоме: микроцефалия, пороки сердечно-сосудистой системы, тяжелые патологии почек, астма и заболевания кожи. Хотя обычно такие дети умирают достаточно рано, известны случаи, когда люди с трисомией по 14 хромосоме доживали до 13 лет. Трисомия по 22 хромосоме: рождение детей с такой патологией — большая редкость. По частоте выкидышей в I триместре эта анеуплоидия стоит на втором месте (после трисомии по 16 хромосоме). Смерть ребенка наступает обычно после рождения или в течение ближайших недель. Лечение трисомий

Пока генетические заболевания такого плана не лечатся. Однако ученые уже говорят о потенциальной возможности лечить трисомии путем генной инженерии. Например, можно было бы использовать аденовирус, как транспорт для доставки в конкретный участок лишней хромосомы гена, способного привести к ее утрате (и такой ген уже известен, по крайней мере, для 21 хромосомы). В другом варианте рассматривается возможность активизации точечных мутаций, включающих этот ген при его наличии.

По мнению экспертов, не так уж много времени осталось до момента, когда можно будет избавлять людей с такими синдромами хотя бы от тяжелых сопутствующих болезней. Например, людям с синдромом Дауна, страдающим о лейкемии, можно будет вводить «исправленные» стволовые клетки, которые способны к производству здоровых и не склонных к болезням клетки.

Неожиданный эффект дает лечение болезней сердца, которые очень часто развиваются у детей с трисомиями. У 40% детей с синдромом Дауна отмечаются врожденные пороки сердца. Когда-то это состояние было дополнительным фактором риска преждевременной смерти человека. Но в наше время такие дети получают операцию на сердце, а вместе с ней возможность жить и в значительном числе случаев быть полноценными членами общества.

В прошлом году американские ученые выступили с заявлением о необходимости проведения операций на сердце также детям с трисомиями по 13 и 18 хромосомам, то есть с синдромами Патау и Эдвардса. Из-за того, что продолжительность жизни таких малышей невелика, обычно они получают лишь симптоматическую поддерживающую терапию. Считается, что не имеет смысла делать серьезную операцию на сердце, если в течение нескольких месяцев ребенок все равно умрет. Однако врачи собрали статистику по тем детям, которые все же такую операцию получили. Оказалось, что при этом срок их жизни увеличивается на 33-67% — дети стали доживать до 2-х лет и более. Особенно выраженным эффект оказался для синдрома Эдвардса. Исследователи заявили, что это повод пересмотреть принципы проведения операций на сердце детям с трисомиями — ведь для многих родителей это шанс провести со своим ребенком не 2 недели, а 2 года.

woman.rambler.ru

Синдром Клайнфельтера — Википедия

Синдром Клайнфельтера — наследственное заболевание. Клиническая картина синдрома описана в 1942 году в работах Гарри Клайнфельтера и Фуллера Олбрайта[3][4]. Генетической особенностью этого синдрома является разнообразие цитогенетических вариантов и их сочетаний (мозаицизм). Обнаружено несколько типов полисомии по хромосомам X и Y у лиц мужского пола: 47, XXY; 47, XYY; 48, XXXY; 48, XYYY; 48 XXYY; 49 XXXXY; 49 XXXYY. Наиболее распространён синдром Клайнфельтера (47, XXY). Общая частота его колеблется в пределах 1 на 500 - 700 новорождённых мальчиков, что делает данным синдром первым по частоте встречаемости среди хромосомных болезней[5].

Синдром Клайнфельтера является крайне распространённой патологией и встречается в мужской популяции с частотой 0,2 %[6]. Таким образом, на каждые 500 новорождённых мальчиков приходится 1 ребёнок с данной патологией (для сравнения: врождённая дисфункция коры надпочечников — 1 случай на 10—25 тысяч новорождённых). Синдром Клайнфельтера является не только самой частой формой мужского гипогонадизма, бесплодия, эректильной дисфункции, гинекомастии, но и одной из наиболее распространённых эндокринных патологий, занимая третье место после сахарного диабета и заболеваний щитовидной железы. Однако есть основания предполагать, что примерно у половины больных на протяжении всей жизни этот синдром остаётся нераспознанным[7] и такие пациенты могут наблюдаться у врачей различных специальностей с осложнениями, связанными с отсутствием терапии основного заболевания, то есть проявлений и последствий гипогонадизма. Нарушение числа хромосом обусловлено их нерасхождением либо при делении мейоза на ранней стадии развития зародышевых клеток, либо при митотическом делении клеток на начальных этапах развития эмбриона. Преобладает патология мейоза; в 2/3 случаев нерасхождение имеет место при материнском овогенезе и в 1/3 — при отцовском сперматогенезе. Фактором риска возникновения синдрома Клайнфельтера является, по-видимому, возраст матери; связь с возрастом отца не установлена. В отличие от многих других анэуплоидий, синдром Клайнфельтера не повышает риск выкидыша и не является летальным фактором.

Человек с типичным нелеченным (хирургией/гормонами) Клайнфельтером. Мозаичный 46,XY/47,XXY, диагностированный в 19 лет.

Синдром Клайнфельтера обычно клинически проявляется лишь после полового созревания и поэтому диагностируется относительно поздно. Но тем не менее при внимательном подходе на разных этапах полового созревания можно заподозрить синдром Клайнфельтера, поскольку внешне такие пациенты имеют ряд характерных признаков.

До начала полового развития удаётся отметить только отдельные физические признаки: длинные ноги, высокая талия, высокий рост. Пик прибавки роста приходится на период между 5—8 годами и средний рост взрослых пациентов составляет приблизительно 179,2 + 6,2 см[8][9].

К началу полового созревания формируются характерные пропорции тела: больные часто оказываются выше сверстников, но в отличие от типичного евнухоидизма, размах рук у них редко превышает длину тела, ноги заметно длиннее туловища. Кроме того, некоторые дети с данным синдромом могут испытывать трудности в учёбе и в выражении своих мыслей.

В некоторых руководствах указывается, что у пациентов с синдромом Клайнфельтера отмечается несколько сниженный объём яичек до периода полового созревания. Это утверждение является неверным, поскольку до периода полового созревания объём яичек у всех мальчиков небольшой — менее 1 мл[6].

В подростковом возрасте синдром чаще всего проявляется увеличением грудных желез, хотя в некоторых случаях этот признак может и отсутствовать. Также необходимо отметить, что у 60—75 % подростков пубертатного возраста также отмечается увеличение грудных желез — пубертатная гинекомастия, которая, однако, самостоятельно проходит в течение 2-х лет, в то время как у пациентов с синдромом Клайнфельтера гинекомастия сохраняется на всю жизнь. Гинекомастия у пациентов с синдромом Клайнфельтера двусторонняя и, как правило, безболезненная. Ранее считалось, что при данном заболевании существует высокий риск рака грудных желез, однако, в исследовании, проведённом в Дании и включавшем 696 больных с синдромом Клайнфельтера[10], не наблюдалось увеличения риска рака молочных желез по сравнению со здоровыми мужчинами.

Считается, что типичным проявлением синдрома Клайнфельтера является наличие маленьких плотных яичек. Данный признак является патогномоничным для данного заболевания, практически не встречается при других формах гипогонадизма, однако отмечается далеко не у всех пациентов с данным синдромом. Таким образом, отсутствие маленьких и плотных яичек не исключает наличия синдрома Клайнфельтера.

Возможность профилактики развития гинекомастии

Раннее начало применения гормональной терапии позволяет избежать или значительно уменьшить проявления гинекомастии, поэтому начинать терапию половыми гормонами стоит сразу при установлении диагноза. Если гинекомастия уже развилась, то как правило, она имеет необратимый характер, и в отличие от пубертатной или возрастной гинекомастии, не поддается медикаментозному лечению. В случае наличия у пациента дискомфорта, обусловленного гинекомастией, необходимо проведение хирургической операции.

В постпубертатном периоде наиболее частой причиной обращения к врачу пациентов с синдромом Клайнфельтера является бесплодие и нарушение половой функции. У 10 % мужчин с азооспермией обнаруживается синдром Клайнфельтера.

Практически в 100 % случаев у пациентов с синдромом Клайнфельтера отмечается в той или иной степени выраженности андрогенный дефицит. Андрогенный дефицит развивается, как правило, после наступления полового созревания, поэтому у 60 % больных половой член имеет нормальные размеры. Степень вирилизации больных резко варьирует, но в большинстве случаев отмечается оволосение лобка по женскому типу, а также недостаточный рост волос на лице. После 25-летнего возраста примерно 70 % больных жалуются на ослабление полового влечения и потенции.

Из-за сниженной продукции андрогенов часто развиваются остеопороз и мышечная слабость[11]. Нередко наблюдаются ожирение, нарушение толерантности к глюкозе и сахарный диабет 2-го типа. У мужчин с синдромом Клайнфельтера частота аутоиммунных заболеваний значительно выше по сравнению со здоровыми[12]. Имеются сообщения о повышенной частоте развития ревматоидного артрита, системной красной волчанки и других системных коллагенозов, аутоиммунных заболеваний щитовидной железы[13].

Интеллектуальные и поведенческие особенности[править | править код]

У некоторых пациентов с синдромом Клайнфельтера снижен интеллект и ограничены вербальные и познавательные способности. Коэффициент интеллекта (IQ) у таких пациентов широко варьирует от значений ниже среднего до намного превышающих среднее значение. Однако, вербальный коэффициент обычно ниже познавательного. Лёгкая умственная отсталость при синдроме Клайнфельтера встречается в 25—50 % случаев, но иногда бывает и более тяжёлая степень[14]. Было отмечено, что нарушения физического и умственного развития пропорциональны увеличению числа Х-хромосом в кариотипе, при этом каждая дополнительная Х-хромосома ассоциирована со снижением IQ приблизительно на 14 — 15 баллов[15]. Несколько длительных исследований пациентов с синдромом Клайнфельтера (47, XXY) показали наличие у них тенденции к дефициту именно вербальных способностей, что очень часто вызывает трудности в выражении собственных мыслей, составлении сложных грамматических конструкций[16]. Обычно первые трудности мальчики начинают испытывать в школьном возрасте, часто отстают от сверстников в учёбе, особенно по устным предметам. Физические и психологические особенности приводят к отчуждению таких больных от сверстников. С этим, возможно, связано проявление у отдельных больных криминальных наклонностей. Большинством исследователей пациенты с синдромом Клайнфельтера описываются как скромные, тихие, более чувствительные по сравнению со сверстниками.

Сравнительная клиническая характеристика различных видов анеуплоидий[править | править код]

45,X/46,XY[править | править код]

При мозаицизме (46,XY/47,XXY) клинические симптомы выражены слабо, и отдельные больные могут сохранять, хотя и сниженную, способность к оплодотворению. Таким образом, при исследовании эякулята у пациентов с мозаицизмом могут обнаруживаться нормальные сперматозоиды, в отличие от немозаичных форм при генотипе 47XXY, или при более высокой степени анеуплоидий половых хромосом.

47, XXY[править | править код]

В большинстве случаев отмечается азооспермия или тяжёлая степень олигоспермии.

47, XYY[править | править код]

48, XXYY[править | править код]

Мужчины с кариотипом 48, XXYY отличаются более высоким ростом, обычно превышающим 182 см. Остальные клинические проявления ничем не отличаются от пациентов с кариотипом 47,XXY. Что касается психологических особенностей, то обычно такие пациенты характеризуются как тихие и скромные, однако могут быть агрессивными и импульсивными[17][18]. В исследовании, сравнивающем 16 мужчин с кариотипом 48, ХХYY с 9 мужчинами, имеющими кариотип 47,XXY в возрасте 5—20 лет, было отмечено, что первая группа мужчин имеет более низкий показатель IQ, особенно за счёт снижения вербального компонента (коэффициент IQ находится в диапазоне 60-80)[19]. Речь у таких больных обычно замедлена. 48, XXYY мужчины являются также более склонными к агрессивному поведению и депрессиям по сравнению с мужчинами с кариотипом 47, XXY. К тому же у них отмечаются гораздо более низкие адаптивные возможности в социальной среде[19].

48, XXXY[править | править код]

Мужчины с кариотипом 48, XXXY могут иметь как высокий, так и средний рост. Часто отмечаются такие аномалии, как глазной гипертелоризм, плоская переносица, лучелоктевой синостоз, клинодактилия пятого пальца. Коэффициент интеллекта обычно находится в пределах 40—60, речь таких больных значительно замедлена. В поведении отмечается выраженный инфантилизм, который совместим с уровнем IQ. Таких мужчин обычно описывают как пассивных и не особенно агрессивных[17][18].

49, XXXXY[править | править код]

Пациенты с кариотипом 49, XXXXY имеют более выраженные нарушения физического и умственного развития. Они проявляются микроцефалией, глазным гипертелоризмом, плоской переносицей, узкими глазными щелями. Рост таких больных обычно низкий. Они могут также иметь расщеплённый нёбный язычок, волчью пасть, пороки сердца (в том числе открытый ductus arteriosus), лучелоктевой синостоз, вальгусное искривление коленных суставов, деформацию стоп, клинодактилию пятого пальца. Объём яичек, а также размер полового члена у таких пациентов маленькие. IQ снижен и находится в пределах 20 — 60. Их обычно описывают как скромных и дружелюбных, со случайными приступами раздражительности и вспышками гнева, имеют трудности в адаптации к изменяющимся условиям социальной среды[17].

Ранее считалось, что пациенты с синдромом Клайнфельтера бесплодны и возможности к размножению у них нет. В настоящее время данная концепция пересмотрена, в связи с внедрением новых методов экстракорпорального оплодотворения (в частности ИКСИ) и появлением данных о возможности присутствия зародышевых клеток в яичках больных с синдромом Клайнфельтера, что определило попытки применения при этом метода искусственного оплодотворения с забором генетического материала непосредственно из яичка. В отдельных случаях сперматозоиды действительно были получены путём биопсии яичка, причём даже у пациентов с азооспермией. Полученные таким образом сперматозоиды были использованы для оплодотворения яйцеклеток, что привело к получению потомства. При этом описано рождение здоровых детей, зачатых таким образом[20][21]. На данный момент возможно использование методики преимплантационной генетической диагностики (ПГД) для выбора эмбрионов с нормальным набором хромосом до эмбриотрансфера.

Поскольку более чем у 90 % пациентов с синдромом Клайнфельтера отмечается гипогонадизм, они нуждаются в пожизненной заместительной терапии препаратами тестостерона. Заместительную терапию следует начинать как можно раньше, чтобы предотвратить появление симптомов и последствий андрогенной недостаточности. Как показано, в частности, Nielsen и сотр.[22], ранняя заместительная терапия тестостероном не только снимает такие симптомы, как анемия, остеопороз, мышечная слабость и нарушение половой функции, но и способствует социальной адаптации больных и их интеграции в общественную жизнь. При синдроме Клайнфельтера лучше использовать препараты тестостерона длительного действия. Гормональная терапия устраняет все клинические проявления гипогонадизма, кроме бесплодия[23] и не приводит к исчезновению гинекомастии. Если это состояние беспокоит больного, можно прибегнуть к мастэктомии, выполняемой опытным специалистом в клинике пластической хирургии.

Тактика общения с пациентами и их родителями[править | править код]

Важным аспектом ведения пациентов с синдромом Клайнфельтера является общение как с самими пациентами, так и с их родителями. Можно определить основные два направления в решении вопросов, возникающих при таком общении. Во-первых, как правильно информировать родителей пациентов о наличии у ребёнка синдрома Клайнфельтера и чему стоит уделить особое внимание. И во-вторых, необходимость полного информирования самих пациентов об этом синдроме и возможных его последствиях.

Необходимым условием для общения с пациентами и их родителями является, в первую очередь, правильная осведомленность врача о данном синдроме, другими словами, компетентность врача в данном вопросе.

Во многих странах синдром Клайнфельтера часто диагностируется ещё до рождения ребёнка, так как многие женщины позднего детородного возраста, в связи с высоким риском генетических дефектов у будущего потомства, используют пренатальную генетическую диагностику плода. Нередко пренатальное выявление синдрома Клайнфельтера является поводом для прерывания беременности, в том числе и по рекомендации врачей.

В России крайне редко проводится анализ кариотипа будущего ребёнка[источник не указан 168 дней]. Поэтому диагноз, как правило, устанавливается уже после рождения, а точнее в постпубертатном возрасте, когда начинают проявляться симптомы гипогонадизма, и именно в этот период отмечается наиболее частая обращаемость пациентов и их родителей к специалистам[источник не указан 168 дней].

  • Флориан-Айала Фауна — американская художница, музыкант, поэтесса и музыкальный продюсер[24]
  • Алекс Макфарлейн — считается первым держателем свидетельства о рождении и паспорта с неопределенным гендерным маркером[25]
  1. ↑ Disease Ontology release 2019-05-13 — 2019-05-13 — 2019.
  2. ↑ Monarch Disease Ontology release 2018-06-29sonu — 2018-06-29 — 2018.
  3. Klinefelter H. F. Jr., Reifenstein E. C. Jr., Albright F. Syndrome characterized by gynecomastia, aspermatogenesis without a-Leydigism and increased excretion of follicle-stimulating hormone // Journal of Clinical Endocrinology & Metabolism. — 1942. — Vol. 2. — P. 615—624. — doi:10.1210/jcem-2-11-615.
  4. Klinefelter H. F. Klinefelter syndrome: historical background and development // Southern Medical Journal. — 1986. — Vol. 79, № 45. — P. 1089—1093. — PMID 3529433.
  5. ↑ Синдром Клайнфельтера приводит к мужскому бесплодию (неопр.) (недоступная ссылка). Дата обращения 28 августа 2009. Архивировано 4 апреля 2010 года.
  6. 1 2 Мельниченко Г. А., Калинченко С. Ю., Гусакова Д. А. Синдром Клайнфельтера. Практическая Медицина. 2007 Москва
  7. ↑ Аbramsky L., Chapple J. 47,XXY (Klinefelter syndrome) and 47,XYY: estimated rates of and indication for postnatal diagnosis with implications for prenatal counseling. Prenat Diagn 1997.17: 363—368.
  8. ↑ Ratcliffe S. Long-term outcome in children of sex chromosome abnormalities. Arch Dis Child. 1999 Feb;80(2):192-5
  9. ↑ Schibler D., Brook C.G., Kind H.P., Zachmann M., Prader A. Ggowth and body proportions in 54 boys and men with Klinefelter’s syndrome. 1974 Oct; 29(4)325-33
  10. ↑ Hasle H., Mellemgaard A., Nielsen J., Hansen J.Cancer incidence in men with Klinefelter syndrome. Br J Cancer. 1995 Feb;71(2):416-20
  11. ↑ Horrowitz M., Wishart J.M., O’Loughlin P.D.,Morris H.A., Need A.G., Nordin B.E.C. Osteoporosis and Klinefelter syndrome. Clin.Endocrynol. 1992. 36:113 — 118
  12. ↑ Bizzarro A., Valentini G., Mertino G., DaPonte A., De Bellis A., Iacono G. Influence of testosterone therapy on clinical and immunological features of autoimmune diseases associated with Klinefelter’s syndrome associated with Klinefelter’s syndrome. J Clin. Endocrinol. Metab. 1987 Jan; 64(1): 32 — 6.
  13. ↑ Aoki N. Klinefelter’s Syndrome, autoimmunity and associated endocrinopathies. Intern. Med. 1999 Nov; 38 (11):875 — 81
  14. Исаев Д. Н. Умственная отсталость у детей и подростков. Руководство. — СПб: Речь, 2003. — С. 54. — 397 с. — ISBN 5-9268-0212-1.
  15. ↑ Linden MG, Bender BG, Robinson A: Sex chromosome tetrasomy and pentasomy. Pediatrics 1995, 96:672-682
  16. ↑ Graham JM Jr, Bashir AS, Stark RE, Silbert A, Walzer S: Oral and written language abilities of XXY boys: implications for anticipatory guidance. Pediatrics 1988, 81:795-806
  17. 1 2 3 Linden MG, Bender BG, Robinson A: Sex chromosome tetrasomy and pentasomy. Pediatrics 1995, 96:672-682
  18. 1 2 Visootsak J., Rosner B., Dykens E., Tartaglia N., Graham J.M. Jr: Adaptive and maladaptive behavior of males with sex chromosome aneuploidy. J Investig Med 2006, 54:S280
  19. 1 2 Tartaglia, Reynolds A, Visootsak J, Gronly S, Hansen R, Hagerman R: Behavioral phenotypes of males with sex chromosomal aneuploidy. J Dev Behav Pediatr 2005, 26:464-465
  20. ↑ Staessen C., Coonen E.. Van Assche E., Tournaye H., Joris H., Devroey P., Van Steirteghem A.C., Liebaers I. Preimplantation diagnosis for X and Y normality in embryos from three Klinefelter patients. 1996. Hum. Reprod.11:1650 — 1653
  21. ↑ Reubinoff B.E., Abeliovich D., Werner M., Schenker J.G., Safran A., Lewin A. A birth in non-mosaic Klinefelter’s syndrome after testicular fine needle aspiration, intracytoplasmatic sperm injection and preimplantation genetic diagnosis. 1998. Hum. Reprod. 13:1887 — 1892
  22. ↑ Nielsen J., Pelsen B., Sornensen K. Follow- up of 30 Klinefelter males treated with testosterone. Clin. Genet. 1988. 33:262 — 269
  23. ↑ Синдром Клайнфельтера (неопр.) (недоступная ссылка). Дата обращения 9 июня 2010. Архивировано 31 октября 2014 года.
  24. Rodrigo. CVLT Nation interviews Florian Ayala Fauna - (англ.). CVLT Nation (12 May 2017). Дата обращения 15 июня 2019.
  25. Ingrid Holme. Hearing People's Own Stories // Science as Culture. — 2008-09-01. — Т. 17, вып. 3. — С. 341—344. — ISSN 0950-5431. — doi:10.1080/09505430802280784.

ru.wikipedia.org

Хромосомные болезни. Примеры и причины. Видеоурок. Биология 10 Класс

Тема урока: «Хромосомные болезни», мы рассмотрим их примеры и причины.

Хромосомные болезни – это большая группа врожденных наследственных болезней, вызываемых аномалиями в количестве или структуре хромосом, то есть мутациями. Заболевания, которые вызываются геномными и хромосомными мутациями, называются хромосомными болезнями.

Патологические изменения возникают как при потере генетического материала, так и при добавлении новых хромосом.

Заболевания, вызываемые мутациями аутосом (Рис. 1):

Рис. 1. Болезни, вызываемые мутациями аутосом (Источник)

- делеция в 5-й хромосоме вызывает синдром кошачьего крика, у новорожденных больных отмечается нарушение строения гортани, мяукающий тембр голоса, слабоумие, отсталость психомоторики, такие больные редко доживают до зрелого возраста;

- делеция в 3-й хромосоме, как правило, приводит к прерыванию беременности, при рождении дети не способны сидеть и есть твердую пищу;

- делеция в 21-й хромосоме вызывает хроническое белокровие, нехватку красных кровяных телец;

- трисомия по 21-й хромосоме (болезнь Дауна) (Рис. 2) – в кариотипе у больных не две, а три 21-х хромосомы – это самая распространенная аномалия, частота рождения составляет 1:500, зависит от возраста матери и резко возрастает после 35 лет. До 40 % детей с такой болезнью рождаются у возрастных матерей.

Рис. 2. Синдром Дауна (Источник)

У таких больных наблюдается монголоидный тип лица, укороченные конечности, психическая отсталость.

- трисомия по 13-й хромосоме (Синдром Патау) – довольно редкий синдром, частота возникновения 1:14 500, у больных аномалии сердца и почек, серьезные нарушения внешности, продолжительность жизни не более года;

- трисомия по 18-й хромосоме (синдром Эдвардса) – у больных множественные пороки органов, умственная отсталость, смертность в раннем возрасте.

Встречаются трисомии по 8-й, 9-й, 14-й и 22-й хромосоме, они все летальны на раннем этапе.

Существует единичное описание даже тетросомии (умственная отсталость разной степени) и пентосомии (тяжелые поражения организма и умственных способностей) аутосом.

Рис. 3. Болезни, связанные с нарушениями половых хромосом у женщин (Источник)

- трисомия ХХХ (синдром трипло-Х) – частота возникновения 1:700, не резкие отклонения в физическом развитии, нарушения функции яичников, преждевременный климакс. Больные с такой мутацией даже не догадываются о своем кариотипе;

- тетросомия ХХХХ приводит к умственной недостаточности разной степени;

- пентосомия ХХХХХ сопровождается тяжелыми повреждениями органов и сознания;

- моносомия Х0 (синдром Тернера) – единственная совместимая с жизнью, частота возникновения 1:4000, недоразвитые яичники и матка, физическая и умственная отсталость.

- синдром Клайнфельтера встречается в двух формах – полисомия по Х-хромосоме и полисомия по Y-хромосоме, больные с кариотипом ХХ Y – это мужчины женоподобного типа, у них развита грудь, женский голос, длинные ноги, недоразвиты семенники. Они бесплодны, но психически совершенно нормальны;

Рис. 4. Болезни, связанные с нарушениями половых хромосом у мужчин (Источник)

- больные с к

interneturok.ru

Синдром Эдвардса — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 мая 2015; проверки требуют 16 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 мая 2015; проверки требуют 16 правок.

Синдром Э́двардса (синдром трисомии 18) — хромосомное заболевание, характеризуется комплексом множественных пороков развития и трисомией 18 хромосомы. Описан в 1960 году Джоном Эдвардсом (John H. Edwards). Популяционная частота примерно 1:3000 в США, и 1:5000 в мире на 2016 год. Дети с трисомией в 18 хромосоме чаще рождаются у пожилых матерей, взаимосвязь с возрастом матери менее выражена, чем в случаях трисомии хромосомы 21[3] и 13[4]. Для женщин старше 45 лет риск родить больного ребёнка составляет 0,7 %. Девочки с синдромом Эдвардса рождаются в три раза чаще мальчиков. Выживание после года жизни составляет около 5–10%[5].

Причиной заболевания является наличие дополнительной 18-й хромосомы (трёх вместо двух в норме для диплоидного набора) в кариотипе зиготы.

Лишняя хромосома обычно появляется до оплодотворения. У человека нормальные половые клетки — гаметы — содержат по 23 хромосомы (гаплоидный набор) и, сливаясь, они дают кариотип зиготы — 46 хромосом. К появлению лишней хромосомы у гамет обычно приводит нерасхождение хромосом при мейотическом делении, вследствие чего в половой клетке оказывается 24 хромосомы. В случае, если такая клетка встретит при оплодотворении гамету от противоположного пола, они образуют зиготу с трисомией.

В одном случае из десяти наблюдается мозаицизм в явлении трисомии 18: лишнюю хромосому несут не все клетки организма. Это говорит о том, что нерасхождение произошло на ранней стадии развития зародыша, а все клетки с трисомией — потомки неправильно поделившейся клетки зародыша.

Дети с трисомией 18 рождаются с низким весом, в среднем около 2200 грамм, при этом длительность беременности — нормальная или даже превышает норму. Фенотипические проявления синдрома Эдвардса многообразны. Чаще всего возникают аномалии мозгового и лицевого черепа, мозговой череп имеет долихоцефалическую форму. Нижняя челюсть и ротовое отверстие маленькие. Глазные щели узкие и короткие. Ушные раковины деформированы и в подавляющем большинстве случаев расположены низко, несколько вытянуты в горизонтальной плоскости. Мочка, а часто и козелок отсутствуют. Наружный слуховой проход сужен, иногда отсутствует. Грудина короткая, из-за чего межреберные промежутки уменьшены и грудная клетка шире и короче нормальной. В 80 % случаев наблюдается аномальное развитие стопы: пятка резко выступает, свод провисает (стопа-качалка), большой палец утолщён и укорочен. Из дефектов внутренних органов наиболее часто отмечаются пороки сердца и крупных сосудов: дефект межжелудочковой перегородки, аплазии одной створки клапанов аорты и лёгочной артерии. У всех больных наблюдаются гипоплазия мозжечка и мозолистого тела, изменения структур олив, выраженная умственная отсталость, снижение мышечного тонуса, переходящее в повышение со спастикой.

Продолжительность жизни детей с синдромом Эдвардса невелика: 60 % детей умирают в возрасте до 3 месяцев, до года доживает лишь 5-10 %. Основной причиной смерти служат остановка дыхания и нарушения работы сердца. Оставшиеся в живых — глубокие олигофрены.

Частота появления синдрома Эдвардса составляет ~ 1:7000 зачатий и 1:8000 рождений живых детей. Риск рождения больного ребёнка увеличивается с возрастом, особенно, если мать болеет диабетом.

Кроме трисомии 18, присутствующей во всех клетках организма, а также мозаичной трисомии 18, возможна и частичная трисомия. При этом часть хромосомы 18 присоединяется к другой хромосоме. Такой эффект называется транслокация, и он может произойти как при созревании гамет, так и после оплодотворения в клетках зародыша. В клетках организма при этом оказываются две гомологичные хромосомы 18 и, дополнительно, часть хромосомы 18, прикреплённая к другой хромосоме. У людей, страдающих частичной трисомией 18, аномалии проявляются слабее, нежели при типичном синдроме Эдвардса.

  1. ↑ Disease Ontology release 2019-05-13 — 2019-05-13 — 2019.
  2. ↑ Monarch Disease Ontology release 2018-06-29sonu — 2018-06-29 — 2018.
  3. ↑ Синдром Дауна
  4. ↑ Синдром Патау
  5. Genetics Home Reference. Trisomy 18 (англ.). Genetics Home Reference. Дата обращения 20 сентября 2019.

ru.wikipedia.org

Геном человека — Википедия

Геном человека — совокупность наследственного материала, заключённого в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований[1].

Хромосомы[править | править код]

Геном человека состоит из 23 пар хромосом (всего 46 хромосом). Каждая хромосома содержит сотни генов, разделённых межгенным пространством. Межгенное пространство содержит регуляторные участки и ничего не кодирующую ДНК.

В геноме присутствует 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосом X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y-хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом[2][3].

Гены[править | править код]

Предварительные оценки предполагали наличие в геноме человека более 100 тысяч генов. По результатам проекта «Геном человека» количество генов, а точнее открытых рамок считывания, составило около 28 000 генов. В связи с усовершенствованием методов поиска (предсказания) генов предполагается дальнейшее уменьшение числа генов.

Число генов у человека лишь ненамного больше, чем у более простых организмов, например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster. Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг. Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны, и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бендами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме генов, кодирующих белки, человеческий геном содержит тысячи РНК-генов, кодирующих транспортные РНК (tRNA), рибосомные РНК, микроРНК и прочие РНК, не кодирующие белок.

Регуляторные последовательности[править | править код]

В человеческом геноме найдено множество различных последовательностей, отвечающих за регуляцию генов. Под регуляцией понимается контроль экспрессии гена (процесс построения матричной РНК по участку молекулы ДНК). Обычно это короткие последовательности, находящиеся либо рядом с геном, либо внутри гена. Иногда они находятся на значительном расстоянии от гена (энхансеры). Систематизация этих последовательностей, понимание механизмов работы, а также вопросы взаимной регуляции группы генов группой соответствующих ферментов на текущий момент находятся только на начальной стадии изучения. Взаимная регуляция групп генов описывается с помощью сетей регуляции генов. Изучение этих вопросов находится на стыке нескольких дисциплин: прикладной математики, высокопроизводительных вычислений и молекулярной биологии. Знания появляются из сравнений геномов различных организмов и благодаря достижениям в области организации искусственной транскрипции гена в лабораторных условиях.

Идентификация регуляторных последовательностей в человеческом геноме частично была произведена на основе эволюционной консервативности (свойства сохранения важных фрагментов хромосомной последовательности, которые отвечают примерно одной и той же функции). Согласно данным молекулярных часов, эволюционные линии человека и мыши разделились около 100 миллионов лет назад[4]. Для двух геномов компьютерными методами были выявлены консервативные последовательности (последовательности, идентичные или очень слабо отличающиеся в сравниваемых геномах) в некодирующей части и оказалось, что они активно участвуют в механизмах регуляции генов у обоих организмов[5].

Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу. Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8 раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов[6].

Прочие объекты в геноме[править | править код]

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома[7]. Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, пока не выяснена. Эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:

Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент[когда?].

Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и эти участки генома многие называют мусорной ДНК. Однако есть масса свидетельств в пользу того, что эти объекты обладают некоторой функцией, которая пока неясна.

Псевдогены[править | править код]

Эксперименты с ДНК-микрочипами показали, что много участков генома, не являющихся генами, вовлечены в процесс транскрипции[8].

Вирусы[править | править код]

Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты[9]. Большинство ретровирусов встроились в геном предков человека свыше 25 млн лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено[10][11].

Информационное содержание генома человека[править | править код]

Азотистые основания в ДНК (аденин, тимин, гуанин, цитозин) соответствуют 4 различным логическим состояниям, что эквивалентно 2 битам информации[12]. Таким образом, геном человека содержит более 6 гигабит информации в каждой цепи, что эквивалентно 800 мегабайтам и сопоставимо с количеством информации на компакт-диске[13]. Логика хранения данных в парных основаниях аналогична системе виртуализации данных RAID 1.

  1. ↑ Talking glossary of genetic terms: genome (англ.). National Human Genome Research Institute. Дата обращения 1 ноября 2012. Архивировано 4 ноября 2012 года.
  2. Tjio J. H., Levan A. The chromosome number of man (англ.) // Hereditas (англ.)русск.. — 1956. — Vol. 42. — P. 1—6. — doi:10.1111/j.1601-5223.1956.tb03010.x. — PMID 345813. Первая работа с точно установленным числом хромосом у человека.
  3. ↑ Human Chromosome Number, здесь рассказана история подсчёта хромосом у человека
  4. Nei M., Xu P., Glazko G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2001. — Vol. 98, no. 5. — P. 2497—2502. — doi:10.1073/pnas.051611498. — PMID 11226267.
  5. Loots G., Locksley R., Blankespoor C., Wang Z., Miller W., Rubin E., Frazer K. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. (англ.) // Science. — 2000. — Vol. 288, no. 5463. — P. 136—140. — doi:10.1126/science.288.5463.136. — PMID 10753117. Summary
  6. Meunier, Monique Genoscope and Whitehead announce a high sequence coverage of the Tetraodon nigroviridis genome (англ.) (недоступная ссылка). Genoscope. Дата обращения 12 сентября 2006. Архивировано 20 августа 2002 года.
  7. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. (англ.) // Nature. — 2001. — Vol. 409, no. 6822. — P. 860—921. — doi:10.1038/35057062. — PMID 11237011.
  8. Claverie J. Fewer genes, more noncoding RNA. (англ.) // Science. — 2005. — Vol. 309, no. 5740. — P. 1529—1530. — doi:10.1126/science.1116800. — PMID 16141064.
  9. ↑ Предки человека заимствовали полезные гены у вирусов
  10. Eugene D. Sverdlov. Retroviruses and primate evolution // BioEssays. — Vol. 22, № 2. — P. 161—171. — doi:10.1002/(SICI)1521-1878(200002)22:2<161::AID-BIES7>3.0.CO;2-X. — PMID 10655035.
  11. Anders L Kjeldbjerg, Palle Villesen, Lars Aagaard, Finn Skou Pedersen. Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution // BMC Evolutionary Biology. — 2008. — Vol. 8. — P. 266. — doi:10.1186/1471-2148-8-266. — PMID 18826608.
  12. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 25. — 240 с. — ISBN 5-7050-0118-5.
  13. ↑ How much information does human DNA store? - Quora
  • Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. — Языки славянской культуры, 2003. — 396 с. — ISBN 5-94457-108-X.
  • Ридли Мэтт. Геном: автобиография вида в 23 главах. — М.: Эксмо, 2008. — 432 с. — ISBN 5-699-30682-4

ru.wikipedia.org

Лишняя хромосома у человека. Хромосомные аномалии. Что такое 47 хромосом


Лишняя хромосома у человека. Хромосомные аномалии

Организм человека – это сложная многоплановая система, которая функционирует на различных уровнях. Для того, чтобы органы и клетки могли работать в правильном режиме, в конкретных биохимических процессах должны участвовать определённые вещества. Для этого необходимо прочное основание, то есть корректная передача генетического кода. Именно заложенный наследственный материал управляет развитием зародыша.

Однако в наследственной информации иногда возникают изменения, которые появляются в крупных объединениях или же касаются отдельных генов. Подобные ошибки называют мутациями генов. В отдельных случаях такая проблема относится к структурным единицам клетки, то есть к целым хромосомам. Соответственно, в этом случае ошибку называют мутацией хромосом.

Каждая человеческая клетка в норме содержит одинаковое количество хромосом. Они объединены одинаковыми генами. Полный набор составляет 23 пары хромосом, но в половых клетках их в 2 раза меньше. Это объясняется тем, что при оплодотворении слияние сперматозоида и яйцеклетки должно представлять полноценную комбинацию всех необходимых генов. Их распределение происходит не рандомно, а в строго определённом порядке, причём такая линейная последовательность абсолютно одинакова для всех людей.

Хромосомные мутации способствуют изменению их числа и структуры. Таким образом, может появиться лишняя хромосома или, наоборот, их будет не хватать. Этот дисбаланс может быть причиной прерывания беременности либо поспособствует возникновению хромосомных заболеваний.

Хромосома – это переносчик наследственной информации в клетке. Она представляет собой удвоенную молекулу ДНК в комплексе с гистонами. Формирование хромосом происходит в профазе (к моменту деления клеток). Однако в период метафазы их удобнее изучать. Хромосомы, которые состоят из двух хроматид, то есть соединены первичной перетяжкой, располагаются на экваторе клетки. Первичная перетяжка делит хромосому на 2 участка одинаковой либо разной длины.

xn--c1adanacpmdicbu3a0c.xn--p1ai

сколько хромосом у человека? 47?

у человека в соматических клетках по 46 хромосом, в половых - по 23, в 2 раза меньше при появлении одной лишней хромосомы в результате нарушения процесса кроссенговера человек получает синдром Дауна. Проще загуглить.

В геноме здорового человека 23 пары хромосом: 22 пары аутосомных хромосом, а также пара половых хромосом X и Y. Для некоторых заболеваний характерно увеличение этого количества. Ярким примером таких трансформаций считается синдром Дауна. У таких больных 47 хромосом.

47 у дауна (не повезло человеку), у нормального 46

Да, да 47 у тебя

конечно 46, 47 только у даунов

touch.otvet.mail.ru


Смотрите также