Белки клеточной мембраны


Мембранные белки — Википедия

Материал из Википедии — свободной энциклопедии

К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.[1]

Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на том, сколько раз белок пересекает липидный бислой. В соответствии с этим критерием белки подразделяются на монотопические, битопические и политопические:

  • монотопические белки взаимодействуют с одной поверхностью мембраны и не пересекают её;
  • битопические пронизывают мембрану насквозь и взаимодействуют с обеими её поверхностями;
  • политопические пронизывают мембрану несколько раз (многократное взаимодействие с липидами).

Понятно, что первые относятся к периферическим белкам, а вторые и третьи к интегральным.

Различные категории политопических белков. Связывание с мембраной за счёт (1) единичной трансмембранной альфа-спирали, (2) множественных трансмембранных альфа-спиралей, (3) бета-складчатой структуры. Различные категории интегральных монотопических белков. Связывание с мембраной за счёт (1) амфипатической альфа-спирали, параллельной плоскости мембраны, (2) гидрофобной петли, (3) ковалентно соединённого жирнокислотного остатка, (4) электростатического взаимодействия (прямого или кальций-опосредованного).

Топологическая классификация[править | править код]

По отношению к мембране мембранные белки делятся на поли- и монотопические.

  • Политопические, или трансмембранные, белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя. Как правило, трансмембранный фрагмент белка является альфа-спиралью, состоящей из гидрофобных аминокислот (возможно от 1 до 20 таких фрагментов). Только у бактерий, а также в митохондриях и хлоропластах трансмембранные фрагменты могут быть организованы как бета-складчатая структура (от 8 до 22 поворотов полипептидной цепи).
  • Интегральные монотопические белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.

Биохимическая классификация[править | править код]

По биохимической классификации мембранные белки делятся на интегральные и периферические.

  • Интегральные мембранные белки прочно встроены в мембрану и могут быть извлечены из липидного окружения только с помощью детергентов или неполярных растворителей. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
  • Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил. Таким образом, в отличие от интегральных белков они диссоциируют от мембраны при обработке соответствующим водным раствором (например, с низким или высоким pH, с высокой концентрацией соли или под действием хаотропного агента). Эта диссоциация не требует разрушения мембраны.

Мембранные белки могут быть встроены в мембрану за счёт жирнокислотных или пренильных остатков либо гликозилфосфатидилинозитола, присоединённых к белку в процессе их посттрансляционной модификации.

  1. ↑ Stevens T.J. and Arkin I.T. (2000) Do more complex organisms have a greater proportion of membrane protein in their genomes?, Proteins, vol. 39(4):417-420

ru.wikipedia.org

Мембранные белки – ответы на главные вопросы

Однако данная модель не могла объяснить накапливающиеся экспериментальные данные, и в 1972 году С. Д. Сингером и Г. Л. Николсоном была предложена жидкостно-мозаичная модель мембраны, где мембранные белки «плавают» в жидком липидном бислое, как айсберги в открытом море. При этом предполагалось, что белки никак не упорядочены и могут свободно перемещаться в мембране. Белки, согласно этой модели, могут как взаимодействовать с поверхностью мембраны и потому находиться с одной ее стороны (периферические белки), так и пронизывать мембрану насквозь (интегральные мембранные белки). Последние имеют, таким образом, возможность взаимодействовать как со внеклеточной средой, так и с цитоплазмой клетки. Иногда также выделяют полуинтегральные белки, частично погруженные в мембрану, но не пронизывающие ее насквозь.

Тем не менее даже такая сложная модель организации биологической мембраны потребовала уточнения, когда к 80-м годам XX века развилась концепция липидных рафтов. Сам термин «липидные рафты» был впервые предложен в 1988 году К. Симонсом и Г. ван Меером для описания выделенных участков плотно упакованного липида. В настоящее время существование липидных доменов (то есть областей с определенным набором свойств) в плазматической мембране подтверждено огромным количеством исследований. Показано, что их формирование определяется в том числе белками, находящимися в рассматриваемой части мембраны. Мембранные белки, таким образом, распределены по поверхности клетки не хаотично, а занимают определенные участки, в которых может достигаться высокоупорядоченная структура.

Мембранные белки

Надо понимать, что живая клетка лишена привычных для нас органов чувств, которые, между прочим, сами состоят из определенных типов клеток. Тем не менее, как и нам с вами, клетке нужно взаимодействовать с окружающей средой. При этом для некоторых воздействий, например для света или для маленьких липофильных молекул, плазматическая мембрана не является препятствием, и потому они могут напрямую взаимодействовать с внутриклеточными белками. Здесь следует напомнить, что в ответ на внешние воздействия в клетке происходят каскады химических реакций, завершающиеся, например, началом выработки определенных белков или запуском определенных программ жизнедеятельности клетки. Так, в ответ на некоторые воздействия клетка может выделять во внешнюю среду гормоны или ферменты, начинать деление или даже запускать запрограммированный механизм собственной гибели — апоптоз. Это далеко не все возможные ответы, однако все они имеют общий принцип запуска в виде каскада химических превращений во внутриклеточном пространстве.

Также для поддержания жизнедеятельности необходим постоянный транспорт вещества через мембрану. Так как существует множество различных внешних сигналов, на которые клетка должна уметь отвечать, на ее поверхности представлено большое многообразие различных мембранных белков. Среди них выделяют рецепторы, ионные каналы, порины, транспортеры, молекулярные моторы и структурные белки. Рецепторные белки формируют внутри клетки сигнал в ответ на появление снаружи гормонов и сигнальных молекул. К ним относится, например, рецептор инсулина, отвечающий за поступление в клетку глюкозы. Ионные каналы обеспечивают транспорт ионов и поддержание градиента (то есть разницы в концентрациях) их концентраций между внешней средой и цитоплазмой клетки. Натриевые и калиевые каналы непосредственно участвуют в передаче нервного импульса. Порины и транспортеры обеспечивают перенос воды и определенных молекул через мембрану. Молекулярные моторы присутствуют у многих бактерий и обеспечивают подвижность клеток. Наконец, структурные белки поддерживают структуру мембраны и взаимодействуют с остальными белками. Не менее сложной является сеть внутриклеточных путей передачи сигналов с помощью каскадов реакций. Взаимодействиями белков в клетке и, соответственно, путями передачи сигналов занимается специальное научное направление, называемое интерактомикой (от англ. interaction — ‘взаимодействие’).

postnauka.ru

Интегральный мембранный белок — Википедия

Материал из Википедии — свободной энциклопедии

Интегральный мембранный белок (ИМБ, IMP или просто интегральный белок) — один из типов мембранных белков, которые прочно связаны с цитоплазматической мембраной (интегрированы). Они составляют значительную часть белков, закодированных в геноме любого организма[1]. Интегральные белки могут быть погружены в мембрану полностью, а иногда даже пронизывают её насквозь[2]. В этом смысле, все трансмембранные белки являются интегральными белками, но не все интегральные — трансмембранными. Связь интегральных белков с мембранными липидами очень прочна и определяется главным образом гидрофобными взаимодействиями.

Особенность интегральных белков — наличие в их полипептидной цепи довольно протяжённых участков с преобладающим содержанием неполярных аминокислот. Как правило, эти участки имеют конформацию α-спирали, на наружной стороне которой расположены боковые углеводородные фрагменты аминокислотных остатков, в результате чего вся спираль, в целом, приобретает гидрофобный характер. Доля α-спиральных участков в мембранных белках довольно велика (составляет 30—50 %), остальная часть полипептидной цепи находится преимущественно в форме клубка. Участков с β-структурой, как правило, мало, но если они есть, то такой белок как правило имеет форму бета-бочонка.

Интегральные белки можно разделить на две группы:

Структурные исследования[править | править код]

Одним из главных препятствий при структурном изучении интегральных белков биологических мембран является их низкая растворимость. Мембранные белки практически нерастворимы в водных буферных системах, и это фактически исключает использование протеолитических ферментов в традиционной форме. Эта же проблема мешает получению их точных атомных структур методом рентгеноструктурного анализа: мембранные белки с трудом образуют кристаллы. По этой причине для выяснения их третичной и четвертичной структуры часто используется метод моделирования на основе пространственной структуры гомологичных белков.

Интегральные мембранные белки включают в себя белки-транспортёры, линкеры, ионные каналы, рецепторы, ферменты, структурные домены мембранных якорей, белки, участвующие в накоплении и передачи энергии и белки, ответственные за клеточную адгезию[3].

  1. Wallin E., von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms (англ.) // Protein Science (англ.)русск. : journal. — 1998. — Vol. 7, no. 4. — P. 1029—1038. — doi:10.1002/pro.5560070420. — PMID 9568909.
  2. Гусев М.В., Минеева Л.А. Микробиология. — М.: Моск.ун-та, 1985. — 376 с.
  3. Saier M.H., Yen M.R., Noto K., Tamang D.G., Elkan C. The Transporter Classification Database: recent advances (англ.) // Nucleic Acids Res. (англ.)русск. : journal. — 2009. — January (vol. 37, no. Database issue). — P. D274—8. — doi:10.1093/nar/gkn862. — PMID 19022853.

ru.wikipedia.org

Клеточные мембраны — лекции на ПостНауке

 

Итак, мы продвинулись от понимания структуры некоторых немембранных белков к пониманию структуры первых двух мембранных белков. Со временем наше понимание природы клеточной мембраны стало более подробным, и теперь мы знаем, к примеру, что липиды, которые ранее были просто общим классом, — мы знаем отчасти из работ Марка Бретчера, отчасти из последующих работ, что все гликолипиды (те гидрофильные/гидрофобные молекулы липидов с молекулой сахара — «гликолипид» значит ‘с молекулой сахара’) находятся на внешней поверхности и обращены к внешнему миру, а на внутренней поверхности есть кислотные или цвиттер-ионные (что значит, что в них есть оба заряда) молекулы — они обращены к внутренней поверхности. И теперь известны тысячи мембран, у каждой из которых своя структура, и у мембранных белков разные функции. Таким образом, мембрана выполняет множество различных функций, каждая из которых катализируется или активируется небольшой молекулярной машиной — либо одной молекулой белка, либо белковым комплексом.

 

Итак, все функции мембраны: восприятие внешнего мира, транспортировка молекул из клетки или в нее или же передача сигнала внешнему миру — каждая из функций мембранных белков, помогающих клетке коммуницировать и взаимодействовать с внешним миром, выполняется всеми этими разными молекулами белка.

 

С развитием жизни от одноклеточных организмов к более продвинутым эукариотам в соответствии с дарвиновской теорией естественного отбора появилось множество различных видов специализированных мембран, и в нормальной клетке (например, в клетке человека или другого эукариотического организма) существует много типов мембран, характеризующих разные подструктуры клетки. Например, в клетке есть ядро, у которого есть мембрана, ядерная мембрана; есть митохондрии (энергетический центр клетки, производящий АТФ), у которых есть две разные мембраны… Считается, что митохондрии и хлоропласты — две клеточные органеллы — появились в результате захвата раннего типа бактерий другим одноклеточным организмом — это так называемая эндосимбиотическая теория, общепринятая в наше время. Это две органеллы, но есть еще эндоплазматическая сеть, где молекулы синтезируются в рибосомах и выделяются в клетку, или встраиваются в мембрану, или выделяются через аппарат Гольджи и лизосомы во внешний мир. И теперь у нас есть более глубокое понимание того, как работает клеточная мембрана, основанное на работе отдельных белков, вырабатываемых в клетке под контролем ДНК и позволяющих клетке нормально функционировать и взаимодействовать с внешним миром. Вот более-менее приличное описание клеточной мембраны.

 

Есть интересный вопрос: в чем разница между мембранами, которые окружают клетку (одиночными мембранами), и мембранами, которые формируют отделы внутри клетки? Есть приблизительно десять или двенадцать хорошо описанных типов мембран, и, конечно же, каждому из них можно было бы посвятить отдельную лекцию, но давайте по крайней мере кратко опишем их.

 

Итак, вначале были одноклеточные организмы с одиночной мембраной, сообщающейся с окружающим миром. С развитием жизни многие из этих бактерий развили двойную мембрану. Так, в бактериях есть внутренняя и внешняя мембрана. Внутренняя мембрана обычно выполняет наиболее сложноосуществимые виды деятельности клетки: транспортировку, распознавание, передачу сигналов и так далее. Внешняя мембрана, напротив, чаще всего является защитным слоем, то есть у бактерии есть клеточная стенка или внешняя мембрана, не такая сложная по своим функциям, играющая роль буфера, защищающего клетку от враждебных условий внешней среды. Это у бактерий. И далее возникают высшие формы жизни, многоклеточные организмы, и здесь появляются ткани, клетки, органоиды и так далее — множество разных типов клеток: клетки почек, клетки печени, клетки сетчатки, клетки мозга, нейроны… И каждая из этих клеток организована по-своему.

 

Но у многих эукариот общая структура клетки одинакова: ядро клетки, митохондрии и в растениях хлоропласты, которые производят энергию и отвечают за большую часть энергетического бюджета клетки — создание и поглощение энергии в клетках. Митохондрии и хлоропласты — это специализированные органеллы, у которых есть своя функция, и опять же у каждой из них есть внутренняя и внешняя мембрана. Можно было бы прочитать целую лекцию о том, как работают митохондрии, но в целом они поглощают питательные вещества, перерабатывают их, производят АТФ. АТФ — это молекула, которая представляет собой химическое хранилище энергии. Обычно ее называют энергетической валютой клетки, которая затем выходит в цитоплазму и используется в деятельности клетки. В АТФ есть фосфатная группа на конце молекулы, и, когда она «отрезается», АТФ превращается в АДФ, которая затем возвращается в митохондрию, «перезаряжается» и отправляется обратно, так что у митохондрии есть АДФ/АТФ-транслоказа, которая обменивает эти две молекулы друг на друга и «заряжает» клетку. Таким образом, митохондрии производят всю энергию в клетке. Хлоропласты же поглощают свет и затем превращают его сначала в мембранный потенциал, который превращается в ту же АТФ, а она, в свою очередь, выходит в клетку&

В эукариотических клетках есть ядро, содержащее ДНК. Ядерная мембрана отделяет ядро от цитоплазмы; ДНК транскрибируется в  РНК, которая отправляется в цитоплазму, а в рибосомах транслируется для создания белков, выделяющихся либо в цитоплазму, либо через эндоплазматическую сеть — еще одну мембранную структуру, находящуюся в цитоплазме, а в эндоплазматической сети в эукариотических клетках белки или включаются в мембрану, или проходят через внутреннюю часть эндоплазматической сети, а затем — через аппарат Гольджи, и многочисленные везикулы попадают наружу клетки. Таким образом, есть пути секреции, организованные разными мембранами, и в каждой из мембран есть свой белок, который задает свойства мембраны.

postnauka.ru

Трансмембранный белок — Википедия

Материал из Википедии — свободной энциклопедии

Схематическое представление трансмембранных белков:
1. одиночная трансмембранная α-спираль (битопический белок)
2. политопический альфаспиральный белок
3. политопический трансмембранный β-бочонок
Мембрана обозначена светло-коричневым цветом.

Трансмембранный белок — мембранный белок, который насквозь пронизывает липидный бислой, в котором он постоянно находится. Трансмембранные белки плотно закрепляются в мембране при помощи специального класса липидов, называемых кольцевая липидная оболочка. Многие из этих белков выполняют транспортную функцию, позволяя специфическим веществам пересекать биологическую мембрану, чтобы попасть внутрь клетки или же напротив, не давая им покинуть её пределов.

В водном растворе трансмембранные белки слипаются и выпадают в осадок. Для их экстракции требуется использовать детергенты или неполярные растворители, хотя некоторые из них (имеющие структуру бета-бочонка) можно экстрагировать используя денатурирующие агенты. Все трансмембранные белки являются интегральными белками мембраны, но не все интегральные белки являются трансмембранными[1].

По структуре[править | править код]

Существует два типа трансмембранных белков[2]: белки, состоящие из альфа-спиралей, и белки, состоящие из бета-тяжей (β-бочонки). Альфаспиральные белки располагаются на внутренних мембранах клеток бактерий или в плазматических мембранах клеток эукариот, а также иногда в наружных мембранах бактерий[3]. Это очень большая группа трансмембранных белков: у человека 27 % всех белков составляют альфаспиральные белки мембраны[4]. β-бочонки встречаются только во внешних мембранах грамотрицательных бактерий, в стенках грамположительных бактерий и наружных мембранах митохондрий и хлоропластов. Все трансмембранные β-бочонки обладают сходной топологией, что может говорить об их общем эволюционном происхождении и сходном механизме укладки.

По топологии[править | править код]

Эта классификация основана на положении N- и C-концевых доменов и относится ко всем интегральным белкам мембраны. К I, II и III типам относятся белки, которые пересекают мембрану только один раз, а к типу IV относятся те белки, которые пересекают мембрану несколько раз. Трансмембранные белки I типа имеют N-концевую сигнальную последовательность и заякорены на липидной мембране при помощи последовательности остановки транслокации, которая как высвобождается транслоконом, таким образом, что две части белка остаются торчать по разные стороны мембраны. Они расположены таким образом, что их N-конец направлен в просвет эндоплазматического ретикулума в процессе их синтеза и транслокации (N-конец будет направлен во внеклеточное пространство, если зрелый белок расположен на плазмалемме). Белки II и III типа заякорены сигнальной якорной последовательностью, которая расположена не на конце, а внутри полипептидной цепи. Белки II типа направлены в просвет ЭР своим C-концом, а белки III типа N-концом. Тип IV подразделяют на IV-A, у которых N-конец направлен в цитозоль и IV-B, у которых N-конец направлен в просвет ЭПР[5]. К V типу относятся интегральные белки, которые не являются трансмембранными и заякорены на липидной мембране при помощи ковалентно-связанных липидов. К типу VI относятся белки, которые имеют как трансмембранные домены, так и липидные якори[6].

  1. Steven R. Goodman. Medical cell biology (неопр.). — Academic Press, 2008. — С. 37—. — ISBN 978-0-12-370458-0.
  2. Jin Xiong. Essential bioinformatics (неопр.). — Cambridge University Press, 2006. — С. 208—. — ISBN 978-0-521-84098-9.
  3. ↑ alpha-helical proteins in outer membranes include Stannin and certain lipoproteins, and others
  4. Almén M. S., Nordström K. J., Fredriksson R., Schiöth H. B. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin (англ.) // BMC Biol. (англ.)русск. : journal. — 2009. — Vol. 7. — P. 50. — doi:10.1186/1741-7007-7-50. — PMID 19678920.
  5. ↑ Harvey Lodish etc.; Molecular Cell Biology, Sixth edition, p.546
  6. ↑ Nelson, D. L., & Cox, M. M. (2008). Principles of Biochemistry (5th ed., p. 377). New York, NY: W.H. Freeman and Company.

ru.wikipedia.org

Биологические мембраны

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И ФУНКЦИЯ БИОЛОГИЧЕСКИХ МЕМБРАН

Биологические мембраны — это активный молекулярный комплекс с высокоизбирательными свойствами, обеспечивающий обмен веществ и энергии с окружающей средой. В мембранах находятся специфические молекулярные насосы и каналы, с помощью которых регулируются молекулярный и ионный состав внутриклеточной среды. Помимо внешней цитоплазматической мембраны (плазмолемма) в клетках эукариотов имеются еще и внутренние мембраны, ограничивающие различные внутриклеточные компартменты (отсеки), например митохондрии, лизосомы, хлоропласты и т. д. Мембраны регулируют также обмен информацией между клетками и средой (восприятие внешних стимулов) и т. д. Мембраны различаются как по функции, так и по структуре. Однако всем им присущи следующие основные свойства:

■ мембраны представляют собой плотную структуру толщиной в несколько молекул, 60-100 А, образующую сплошную перегородку между отдельными клетками и внутриклеточными отсеками;

■ мембраны главным образом состоят из липидов и белков. В мембранах имеются также углеводные компоненты, связанные с липидами и белками;

■ липиды мембран представлены относительно небольшими молекулами, несущими гидрофильные и гидрофобные группы. В водной среде эти молекулы спонтанно образуют замкнутые бимолекулярные слои, которые служат барьером для проникновения полярных соединений;

■ большинство функций мембран опосредуются специфическими белками, которые могут играть роль насосов, каналов, рецепторов, ферментов и т. д.

В состав мембран входят три основных типа липидов: фосфолипиды, гликолипиды и холестерин.

СТРОЕНИЕ МЕМБРАН

Фосфолипиды мембран. Среди липидных компонентов мембран главенствующая роль принадлежит фосфолипидам — веществам, производным либо трехатомного спирта глицерола (глицерофосфолипиды), либо более сложного спирта сфингозина (сфингофосфолипиды). Все основные глицерофосфолипиды являются производными фосфатидной кислоты, этерифицированной с гидроксильной группой спиртов, таких как серии (серинфосфатиды кефалины), этаноламин, холин (холинфосфа-тиды), кардиолипин (дифосфатидилглицерол) и инозитол (фос-фатидилинозитол).

Из сфингофосфолипидов основным является сфингомиелин, основу которого составляет сфингозин — аминоспирт с длинной ненасыщенной углеводородной цепью. В состав сфингомиелина входит также азотистое основание холин.

Независимо от структурных разнообразий каждая молекула фосфолипида в водной среде — это амфипатическая молекула с полярной головкой и неполярной хвостовой частью. Полярная головка образуется за счет остатков спиртовых групп, азотистых оснований и фосфорной кислоты. Хвостовая же часть - за счет радикалов двух жирных кислот насыщенного и ненасыщенного ряда. Благодаря своим амфипатическим свойствам фосфолипиды в водной среде спонтанно формируют липидные бислои, где полярные головки фосфолипидов направлены в сторону растворимой части клетки с образованием водородных связей с диполями воды, а неполярные хвосты — внутрь бислоя, скрепляясь между собой за счет гидрофобных взаимодействий. Именно бислойная структура фосфолипидов определяет полупроницаемые свойства мембран.

В качестве примера можно привести фосфатидилэтаноламин и фосфатидилхолин. Оба они имеют в верхней части молекулы полярные головки Nh5 (фосфатидилэтаноламин) и N+ (фосфатидилхолин), которые через остаток фосфорной кислоты и глицерина присоединены к двум остаткам жирных кислот, из которых одна насыщенная, другая — ненасыщенная (рис. 1).

 

 

Фосфолипиды с ненасыщенными жирными кислотами

Фосфолипиды с насыщенными жирными кислотами

В 1972 г. С. Дж. Сингер и Г. Никольсон сформулировали теорию строения мембран, согласно которой мембраны имеют жидкостно-мозаичную структуру. При обычной для клетки температуре мембранный бислой находится в жидком состоянии, что обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами в гидрофобных хвостах полярных фосфолипидов. Жирные кислоты с ненасыщенными связями характеризуются большей гибкостью (в отличие от насыщенных ЖК) и способностью создавать изгибы, что предотвращает плотную упаковку, затрудняет «замораживание» мембран и таким образом влияет на их текучесть ().

Упаковка углеводородов в бислое зависит от температуры. При низких температурах бислой находится в виде геля и упакован плотно, при высоких же температурах (температура тела) бислой фактически «расплавляется» и становится текучим, позволяя липидным молекулам двигаться вокруг своей оси, вращаться, меняться местами. Это, в свою очередь, способствует перемещению уже других компонентов в мембране, в частности белков.

Мембранные гликолипиды. Следующим важным компонентом мембран являются гликолипиды — липиды, содержащие углеводы. Гликолипиды животных клеток, подобно сфингомиелину, являются производными спирта сфингозина, связанного с ацильным радикалом. Отличие между этими липидами заключается в том, что в гликолипидах к сфингозиновому остатку присоединены один или несколько остатков сахара, а в сфингомиелине — фосфорилхолин.

Гликолипиды могут быть простые и сложные. Простейший гликолипид — цереброзид, содержащий только один остаток сахара (глюкозу или галактозу). В более сложных гликолипидах число сахарных остатков может достигать семи (ганглиозиды)

Гликолипиды в мембранах могут выполнять защитную, полупроводниковую, рецепторсвязывающую роль. Среди молекул, способных связываться с гликолипидами, встречаются также такие клеточные яды, как холера, токсин тетануса и др.

Холестерин в мембранах. Другой представитель липидов в мембранах — это холестерин. Количество его в мембранах варьирует в зависимости от типа клеток. В плазматических мембранах в среднем на каждую молекулу фосфолипида приходится примерно 1 молекула холестерина. У других (например, бактерий) — холестерина нет вообще. У холестерина так же, как у фосфолипидов, имеются участки полярные и неполярные.

Внутри мембран холестерин внедряется между фосфолипидами и ориентируется в том же направлении, что и сами молекулы фосфолипидов. Таким образом, полярная головка холестерина оказывается в той же плоскости, что и полярные головки фосфолипидов (рис. 2).

В мембранах холестерин выполняет следующие функции:

■ фиксируют первые несколько ближайших углеводородных групп, входящих в состав фосфолипидных жирных кислот. Это делает липидный бислой более устойчивым к деформациям и ограничивает прохождение через них небольших водорастворимых молекул. В случае отсутствия холестерина (как, например, у бактерий) клетка нуждается в оболочке;

■ предотвращает кристаллизацию углеводородов и фазовые сдвиги в мембране.

Мембранные белки. В то время как мембранные липиды ответственны за создание барьера проницаемости, мембранные белки опосредуют отдельные функции мембран, т. е. транспорт веществ, передачу информации, энергии и т. д. Соотношение между липидами и белками у разных мембран может быть разным, например, миелин, изолятор нервных клеток, содержит только 18% белков и 76% липидов, а митохондриальная внутренняя мембрана, наоборот — содержит 76% белков и только 24% липидов. В зависимости от характера локализации в мембранах выделяют белки интегральные (трансмембранные), периферические и «заякоренные».

Интегральные белки пронизывают бислой мембраны насквозь и благодаря своим бифильным свойствам фиксируются в нем. Белки, пронизывающие мембрану только один раз, называют однократно пронизывающими белками, а несколько раз — многократно пронизывающими.

Периферические белки локализуются на поверхности мембран и скрепляются только за счет электростатических взаимодействий и водородных связей. Довольно часто периферические белки присоединяются к некоторым участкам интегральных белков (рис. 3).

 

Олигосахариды Гликопротеины Олигосахариды

Рис. 3. Белковый состав мембран

«Заякоренные» белки фиксируются в мембранах с помощью коротких хвостовых липофильных доменов, образованных либо за счет гидрофобных аминокислотных остатков (цитохром b5), либо за счет ковалентно связанных ацильных радикалов (фермент щелочная фосфатаза).

Участки белков, которые обращены во внеклеточную среду, могут подвергаться гликозилированию.

Транспортные белки. Мембранным белкам принадлежит решающая роль в транспорте веществ через мембраны, и для выполнения этой роли наилучшим образом подходят интегральные белки, которые охватывают пространство как внутриклеточное, так и межклеточное.

Транспорт веществ через мембраны белки осуществляют различными способами; они могут выступать в качестве белковых насосов, каналов, транспортеров.

АТР - зависимые насосы, представляют собой АТРазы, которые способствуют движению через мембраны ионов или небольших молекул против их концентрационного градиента (или электрохимического потенциала) за счет энергии расщепления АТР. Такой вид транспорта известен как активный транспорт. С активным транспортом сопряжены определенные химические реакции, так, например, благодаря таким насосам в животных клетках обеспечивается поддержание низких концентраций Са2+ внутри клетки и высокое содержание ионов Nа+ в межклеточном пространстве, низкое значение рН в желудочном соке у человека и животных (моногастричных), внутри лизосом клеток, вакуолей растительных клеток.

Белковые каналы обеспечивают быстрое (до 108 молекул в секунду) перемещение одновременно молекул воды и других молекул и ионов по направлению снижения их концентрационного градиента (или электрохимического потенциала). Такие перемещения молекул обычно являются энергетически выгодными. Так, плазматические мембраны всех животных клеток содержат К+ - специфичные белковые каналы, которые открываются и закрываются в определенное время. Другие белковые каналы в это время закрыты и открываются только в ответ на воздействие специальных сигналов. Особенно большую роль играют такие каналы в нервных клетках.

Белки-транспортеры способствуют транспорту различных ионов и молекул через мембрану; однако, в отличие от канальных белков, белки-транспортеры связывают одну (или несколько) молекул субстрата одновременно, что приводит к изменению конформации белка и в результате к транспорту этих связанных молекул через мембрану. Такие транспортеры могут переносить в клетку около 102-104 молекул в секунду, что гораздо медленнее, чем движение по белковым каналам.

Обнаружены 3 типа белка-транспортера.

Юнипортеры осуществляют транспорт через мембрану животных клеток молекул одного типа в сторону уменьшения их концентрационного градиента, например, глюкозу, аминокислоты.

Антипортеры и симпортеры обеспечивают согласованный ко-транспорт одних молекул или ионов через мембрану против их концентрационного градиента с движением других молекул или ионов в процессе их перемещения в сторону уменьшения их концентрационного градиента.

АКТИВНЫЙ ТРАНСПОРТ ЧЕРЕЗ МЕМБРАНУ

Активный транспорт — это транспорт веществ через мембраны за счет потребления энергии расщепления АТР. Активным транспортом осуществляется транспорт некоторых ионов и небольших молекул против их концентрационного градиента.

Белки, участвующие в активном транспорте через мембраны (белковые насосы), условно подразделяют на 4 класса: суперсемейство белков АВС, белки класса Р., F., и V. Белки класса Р., F. и V транспортируют только ионы, а АВС — небольшие молекулы и ионы.

Белки (насосы) Р. - класса состоят из 2 субъединиц - α и β; α - субъединица содержит АТР - связывающий участок и является каталитической, а β - субъединица - регуляторной. Большинство белков этого класса являются тетрамерами, составленными из 2 α, и 2 β - субъединиц. В процессе транспорта, по крайней мере, одна из α - субъединиц сначала подвергается фосфорилированию (поэтому и обозначается как «Р»), и именно через нее происходит транспорт ионов.

К белкам Р - класса относятся:

■ Nа+/К+- АТРаза — фермент, локализованный в плазматической мембране и регулирующий внутриклеточное содержание ионов Nа+ и К+ в клетках животных;

■ Са2+- АТРазы — насосы, перекачивающие ионы Са2+ из цитозоля в межклеточное пространство против их концентрационного градиента для поддержания низкого уровня кальция (10-2 М) в цитоплазме клеток животных, дрожжей и растений. Помимо плазматических Са2+-АТРаз клетки мышц содержат еще другую Са2+-АТРазу (мышечный Са2+-й насос), которая осуществляет перекачивание ионов кальция из цитозоля в саркоплазматический ретикулум (СР) — внутриклеточное хранилище кальция;

■ мембранные белки эпителиальных клеток желудка у млекопитающих, способствующие поступлению соляной кислоты в желудок;

■ Н+- насосы, транспортирующие протоны водорода из клетки взамен поступления ионов К+ внутрь клетки;

■ Н+- насосы, регулирующие мембранный электрический потенциал в клетках растений, грибов, бактерий. Эти насосы не содержат фосфопротеиновой части.

Ионные насосы класса F и V структурно похожи друг на друга, но гораздо сложнее, чем белки класса Р. Насосы F и V состоят из 3 трансмембранных белков и 5 различных полипептидов, которые ориентированы в цитозольную часть белка и формируют внутрицитозольный домен. Некоторые субъединицы трансмембранных белков, ориентированные во внешнюю часть биомембран, структурно аналогичны внутрицитозольным доменным полипептидам.

Насосы класса V в основном участвуют в поддержании низкого значения рН в вакуолях растений и лизосомах и других кислотных везикулах животных клеток за счет расходования энергии расщепления АТР и перекачивая протоны водорода через мембрану из цитозоля в межклеточное пространство против протонного электрохимического градиента. Насосы класса F найдены в плазматических мембранах бактерий, мембранах хлоропластов и митохондрий. В отличие от насосов класса V их функция в основном направлена на синтез АТР из АDР и неорганического фосфата за счет движения протонов водорода из цитозольного межмембранного пространства в сторону уменьшения электрохимического градиента.

Последний класс АTР - зависимых транспортных белков — это суперсемейство АВС (АТР-binding cassette). Этот класс включает до 100 различных транспортных белков, и обнаружены они в клетках всех организмов. Каждый АВС - белок специфичен по отношению к одному какому-то субстрату, или группе субстратов, похожих друг на друга, включая ионы, углеводы, пептиды, полисахариды и даже белки.

Все АВС - транспортные белки объединяет наличие у них 4 главных доменов — двух трансмембранных доменов (Т), образующих так называемые ворота для «прохождения» молекул через мембрану, и двух внутрицитозольных домена (А), участвующих в связывании АТР. Таких АТР - связывающих участков у АВС - белков могут быть один или два, и их часто называют АТРазами, хотя и не всегда они проявляют АТР - гидролизующие свойства. В отдельных случаях такие трансмембранные белки могут проявить АТР - синтезирующие свойства, что играет решающую роль при синтезе АТР в митохондриальных мембранах.

 

veterinarua.ru

Белки, заякоренные липидами — Википедия

Липидная мембрана с разнообразными белками

Белки́, зая́коренные липи́дами, или липидосвя́занные белки́ (англ. Lipid-anchored proteins, lipid-linked proteins) — белки клеточной мембраны, ковалентно связанные с липидами клеточной мембраны. Эти липиды вставлены в мембрану бок о бок с хвостами жирных кислот. Белки, заякоренные липидами, могут находиться с любой стороны клеточной мембраны. Таким образом, липид служит своего рода якорем, закрепляющим белок вблизи клеточной мембраны[1][2].

Липидные группы, связанные с белками, могут принимать участие в белок-белковых взаимодействиях и влиять на работу белков, которые к ним прикреплены[2][3]. Например, липидные группы могут играть важную роль в увеличении гидрофобности молекулы. Это обеспечивает способность заякоренных белков взаимодействовать с клеточной мембраной и белковыми доменами[4].

Существует три типа белков, заякоренных липидами:

К белку могут быть ковалентно присоединены несколько липидных групп, однако место, которым белок связан с липидом, зависит и от липида, и от самого белка[2].

Изопреновая единица

Как и следует из названия, пренилированные белки ковалентно связаны с гидрофобными полимерами изопрена (то есть разветвлённого пятиуглеродного углеводорода[5]) через аминокислотные остатки цистеина[2][3]. Изопреноидные группы, обычно фарнезил (15 атомов углерода) и геранилгеранил[en] (20 атомов углерода), прикрепляются к белку при помощи тиоэфирных связей с остатками цистеина, расположенными рядом с С-концом белка[3][4]. Пренилирование белков облегчает их взаимодействие с клеточной мембраной[1].

Мотив пренилирования, известный как CAAX-бокс — наиболее популярный сайт пренилирования белков, то есть сайт, к которому ковалентно прикрепляются фарнезил или геранилгеранил[2][3]. В CAAX-боксе С — это пренилируемый остаток цистеина, А — алифатический аминокислотный остаток и Х определяет, какой тип пренилирования будет иметь место. Если Х — это Ala, Met, Ser или Gln, то белок будет фарнезилирован при помощи фермента фарнезилтрансферазы[en], а если Х — это Leu, то белок будет геранилгеранилирован ферментом геранилгеранилтрансферазой I[en][3][4]. Эти ферменты схожи и оба состоят из двух субъединиц[6].

Пренилированные белки очень важны для роста эукариотической клетки, дифференцировки и морфологии[6]. Более того, пренилирование — это обратимая посттрансляционная модификация. Динамическое взаимодействие пренилированных белков с клеточной мембраной необходимо для их участия в передаче сигнала и часто расстроено при таких заболеваниях, как рак[7] . Например, Ras — это белок, подвергающийся пренилированию фарнезилтрансферазой, и когда он находится в активном состоянии, он может включать гены, участвующие в клеточном росте и дифференцировке. Поэтому чрезмерная активность Ras может привести к раку[8]. Изучение механизма действия пренилированных белков важно для разработки противораковых препаратов[9]. К пренилированным белкам также относятся члены белковых семейств Rab[en] и Rho, а также ламины[6].

Некоторые пренильные группы, участвующие в метаболическом пути HGM-КоА редуктазы[1], — геранилгераниол[en], фарнезол и долихол[en] — в связанном с пирофосфатом виде участвуют в реакциях конденсации, ускоряемых такими ферментами, как пренилтрансфераза[en], и в итоге образуют циклы с образованием холестерина[2].

Белки, ацилированные жирными кислотами[править | править код]

Белки, ацилированные жирными кислотами, — это белки, которые подверглись посттрансляционным модификациям и стали ковалентно связанными с жирными кислотами по некоторым аминокислотным остаткам[10][11]. К числу жирных кислот, наиболее часто связанных с белками, относят насыщенную 14-углеродную миристиновую кислоту и 16-углеродную пальмитиновую кислоту. Белки могут быть связаны как с одной из этих жирных кислот, так и с двумя[10].

N-миристоилирование[править | править код]

Миристоилирование

N-миристоилирование (то есть присоединение миристиновой кислоты) — это, как правило, необратимая белковая модификация, которая обычно происходит во время синтеза белка[10][12] и представляет собой присоединение миристиновой кислоты к α-аминогруппы концевого остатка глицина посредством пептидной связи[2][11]. Эта реакция ускоряется ферментом N-миристоилтрансферазой[en]. Белки, подвергающиеся N-миристоилированию, начинаются с Met-Gly и имеют серин или треонин в позиции 5[10]. Миристоилированные белки участвуют в передаче сигнала, белок-белковых взаимодействиях и механизмах, которые регулируют нацеливание и функционирование других белков[12]. Например, миристоилирование белка Bid[en] важно для регуляции апоптоза: миристоилированный Bid направляется к митохондриям и вызывает выход оттуда цитохрома с, что в конечном счёте приводит к апоптозу. Другие миристоилированные белки, участвующие в регуляции апоптоза, — актин и гельзолин[en][13].

S-пальмитоилирование[править | править код]

Пальмитоилирование

S-пальмитоилирование (то есть присоединение пальмитиновой кислоты) — это обратимая белковая модификация, при которой пальмитиновая кислота присоединяется к специфическому остатку цистеина посредством тиоэфирной связи[2][10]. Когда к пальмитоилированным белкам присоединяются жирные кислоты средней и большой длины, может использоваться термин S-ацилирование. Для пальмитоилирования не было определено консенсусной последовательности[en][10]. Пальмитолированные белки в основном встречаются на цитоплазматической стороне клеточной мембраны, где они участвуют в передаче сигнала[2]. Пальмитоильная группа может быть удалена ферментами пальмитоилтиоэстеразами. Предполагается, что обратимое пальмитоилирование может регулировать взаимодействие белка с клеточной мембраной и таким образом принимать участие в передаче сигнала. Кроме того, оно может использоваться для регуляции внутриклеточной локализации белка, стабильности и кругооборота[14]. Например, в синапсе пальмитоилирование белков играет ключевую роль в передаче сигнала, регулируя кластеризацию белков. Когда белок PSD-95[en] пальмитоилирован, он связан с мембраной и может связываться и кластеризовать ионные каналы на постсинаптической мембране. Таким образом, пальмитоилирование может играть роль в регуляции высвобождения нейромедиаторов[15].

Структура GPI-якоря

GPI-белки присоединяются к комплексу GPI через пептидную связь С-концевой карбоксильной группы белка[16]. GPI-белок состоит из нескольких связанных компонентов: фосфоэтаноламина[en], линейного тетрасахарида (состоящего из трёх остатков маннозы и одного глюкозаминила) и фосфатидилинозитола[17]. Фосфатидилинозитол связан гликозидной связью с не-N-ацетилированным глюкозамином тетрасахарида. Между маннозой на нередуцирующем конце тетрасахарида и фосфоэтаноламином образуется фосфодиэфирная связь. Фосфоэтаноламин далее связан с С-концом соответствующего белка пептидной связью[2]. Прикрепление белка к комплексу GPI опосредуется ферментным комплексом GPI-трансамидаза[17]. Жирные кислоты фосфатидилинозитола вставлены в мембрану и заякоривают белок[16]. GPI-белки располагаются только с внешней стороны клеточной мембраны[2].

Остатки сахаров в тетрасахариде и остатки жирных кислот фосфатидилинозитола варьируют от белка к белку[2]. Благодаря этому разнообразию GPI-белки могут выполнять самые разнообразные функции: выступая как гидролитические ферменты, адгезионные молекулы, рецепторы, ингибиторы протеаз[18]. Более того, GPI-белки играют важные роли в эмбриогенезе, развитии, нейрогенезе, работе иммунной системы и оплодотворении[16]. Например, GPI-белок IZUMO1R/JUNO, названный в честь древнеримской богини плодородия и расположенный на мембране яйцеклетки, необходим для слияния яйцеклетки и сперматозоида. Без этого белка яйцеклетка и сперматозоид не могут слиться, поэтому его исчезнвение после оплодотворения может быть одним из механизмов, защищающих от полиспермии[19]. Другие GPI-белки участвуют в ассоциации мембранных микродоменов, временной гомодимеризации и апикальной сортировке у поляризованных клеток[16].

  1. 1 2 3 Gerald Karp. Cell and Molecular Biology: Concepts and Experiments (англ.). — John Wiley and Sons, 2009. — P. 128—. — ISBN 978-0-470-48337-4.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Voet Judith G., Pratt Charlotte W. Fundamentals of Biochemistry: Life at the Molecular Level (англ.). — 4th. — John Wiley & Sons, Inc., 2013. — P. 263. — ISBN 978-0470-54784-7.
  3. 1 2 3 4 5 Casey P. J., Seabra M. C. Protein prenyltransferases. (англ.) // The Journal of biological chemistry. — 1996. — Vol. 271, no. 10. — P. 5289—5292. — PMID 8621375. [исправить]
  4. 1 2 3 Novelli Giuseppe, D’Apice Maria Rosaria. Protein farnesylation and disease // Journal of Inherited Metabolic Disease. — 2012. — 4 февраля (т. 35, № 5). — С. 917—926. — ISSN 0141-8955. — doi:10.1007/s10545-011-9445-y. [исправить]
  5. isoprene Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health, Seventh Ed (неопр.) (2003). Дата обращения 28 ноября 2015.
  6. 1 2 3 Lane K. T., Beese L. S. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. (англ.) // Journal of lipid research. — 2006. — Vol. 47, no. 4. — P. 681—699. — doi:10.1194/jlr.R600002-JLR200. — PMID 16477080. [исправить]
  7. Stein V., Kubala M. H., Steen J., Grimmond S. M., Alexandrov K. Towards the systematic mapping and engineering of the protein prenylation machinery in Saccharomyces cerevisiae. (англ.) // Public Library of Science ONE. — 2015. — Vol. 10, no. 3. — P. e0120716. — doi:10.1371/journal.pone.0120716. — PMID 25768003. [исправить]
  8. Goodsell D. S. The molecular perspective: the ras oncogene. (англ.) // The oncologist. — 1999. — Vol. 4, no. 3. — P. 263—264. — PMID 10394594. [исправить]
  9. Reuter C. W., Morgan M. A., Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? (англ.) // Blood. — 2000. — Vol. 96, no. 5. — P. 1655—1669. — PMID 10961860. [исправить]
  10. 1 2 3 4 5 6 Resh Marilyn D. Trafficking and signaling by fatty-acylated and prenylated proteins // Nature Chemical Biology. — 2006. — Ноябрь (т. 2, № 11). — С. 584—590. — ISSN 1552-4450. — doi:10.1038/nchembio834. [исправить]
  11. 1 2 Wilson J. P., Raghavan A. S., Yang Y. Y., Charron G., Hang H. C. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone h4 variants. (англ.) // Molecular & cellular proteomics : MCP. — 2011. — Vol. 10, no. 3. — P. 110—001198. — doi:10.1074/mcp.M110.001198. — PMID 21076176. [исправить]
  12. 1 2 Farazi T. A., Waksman G., Gordon J. I. The biology and enzymology of protein N-myristoylation. (англ.) // The Journal of biological chemistry. — 2001. — Vol. 276, no. 43. — P. 39501—39504. — doi:10.1074/jbc.R100042200. — PMID 11527981. [исправить]
  13. Martin Dale D.O., Beauchamp Erwan, Berthiaume Luc G. Post-translational myristoylation: Fat matters in cellular life and death // Biochimie. — 2011. — Январь (т. 93, № 1). — С. 18—31. — ISSN 0300-9084. — doi:10.1016/j.biochi.2010.10.018. [исправить]
  14. Aicart-Ramos Clara, Valero Ruth Ana, Rodriguez-Crespo Ignacio. Protein palmitoylation and subcellular trafficking // Biochimica et Biophysica Acta (BBA) - Biomembranes. — 2011. — Декабрь (т. 1808, № 12). — С. 2981—2994. — ISSN 0005-2736. — doi:10.1016/j.bbamem.2011.07.009. [исправить]
  15. Dityatev Alexander. Molecular Mechanisms of Synaptogenesis (неопр.) / El-Husseini, Alaa. — New York: Springer, 2006. — С. 72—75.
  16. 1 2 3 4 Kinoshita T., Fujita M. Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. (англ.) // Journal of lipid research. — 2016. — Vol. 57, no. 1. — P. 6—24. — doi:10.1194/jlr.R063313. — PMID 26563290. [исправить]
  17. 1 2 Ikezawa Hiroh. Glycosylphosphatidylinositol (GPI)-Anchored Proteins // Biological & Pharmaceutical Bulletin. — 2002. — Т. 25, № 4. — С. 409—417. — ISSN 0918-6158. — doi:10.1248/bpb.25.409. [исправить]
  18. Kinoshita T. Biosynthesis and deficiencies of glycosylphosphatidylinositol. (англ.) // Proceedings of the Japan Academy. Series B, Physical and biological sciences. — 2014. — Vol. 90, no. 4. — P. 130—143. — PMID 24727937. [исправить]
  19. Coonrod S. A., Naaby-Hansen S., Shetty J., Shibahara H., Chen M., White J. M., Herr J. C. Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. (англ.) // Developmental biology. — 1999. — Vol. 207, no. 2. — P. 334—349. — doi:10.1006/dbio.1998.9161. — PMID 10068467. [исправить]

ru.wikipedia.org

Ядерная мембрана — Википедия

Материал из Википедии — свободной энциклопедии

Я́дерная мембра́на, или ядерная оболо́чка, или кариоле́мма, или кариоте́ка[1], или нуклеоле́мма[2] — двойной липидный бислой, мембрана, окружающая ядро в эукариотических клетках.

Ядерная мембрана состоит из двух липидных бислоёв — наружной ядерной мембраны и внутренней ядерной мембраны. Пространство между мембранами называется перинуклеарным пространством; оно составляет единый компартмент с полостью с эндоплазматического ретикулума (ЭПР). Обычно ширина перинуклеарного пространства составляет около 20—40 нм[3]. Хотя внутренняя и внешняя ядерные мембраны продолжают друг друга, они несут разный набор белков[4].

Наружная ядерная мембрана непосредственно переходит в мембрану эндоплазматического ретикулума[5], но при этом наружная ядерная мембрана содержит различные белки в значительно более высоких концентрациях, чем они присутствуют в ЭПР[6].

Внутренняя мембрана ограничивает нуклеоплазму и изнутри покрыта ядерной ламиной, сетью промежуточных филаментов, которая поддерживает форму ядерной мембраны, обеспечивает прикрепление хроматина к оболочке ядра и участвует в регуляции экспрессии генов[6]. Ядерная ламина состоит из белков ламинов. Внутренняя мембрана связана с наружной мембраной посредством ядерных пор, пронизывающих обе мембраны. Хотя ЭПР и обе мембраны соединены друг с другом, многие белки, входящие в их состав, фиксированы в мембране, а не диффундируют свободно в её пределах[7].

Ядерная мембрана пронизана многочисленными ядерными порами. Это крупные белковые комплексы диаметром около 100 нм, с внутренней полостью около 40 нм шириной[6]. Они соединяют внутреннюю и наружную ядерные мембраны. Количество ядерных пор различно в разных типах клеток и может изменяться в зависимости от транскрипционной активности ядра.

В течение G2-фазы интерфазы поверхность ядерной мембраны увеличивается, число ядерных пор иногда возрастает вдвое[6].

У некоторых низших эукариот, например, дрожжей, имеющих закрытый митоз, клеточная мембрана остаётся целой в ходе клеточного деления. Веретено деления у них формируется под мембраной[6]. При полузакрытом митозе в ядерной оболочке образуются крупные отверстия. При закрытом митозе с внеядерным веретеном (у динофлагеллят) в ядерную оболочку встраиваются центромеры хромосом.

У высших эукариот — животных и растений — ядерная мембрана разрушается в прометафазе митоза, позволяя веретену деления сформироваться снаружи. Механизм разрушения и перестройки ядерной мембраны ещё не до конца понятен.

Разрушение[править | править код]

У млекопитающих ядерная мембрана разрушается последовательно, шаг за шагом. Сначала полипептиды-нуклеопорины избирательно переносятся из ядерной мембраны. После этого оставшиеся ядерные поровые комплексы одновременно разрушаются. Биохимические исследования показали, что, скорее, ядерные поры распадаются на стабильные фрагменты, чем на короткие полипептидные цепочки[6].

Электронная и флуоресцентная микроскопия засвидетельствовали то, что ядерная мембрана абсорбируется эндоплазматическим ретикулумом — в норме ядерные белки в ЭПР не обнаруживаются, однако проявляются там в ходе митоза[6].

Перестройка[править | править код]

То, как ядерная мембрана вновь перестраивается в целостную структуру в течение телофазы, остаётся спорным вопросом. Существуют две теории[6]:

  • Слияние везикул — везикулы ядерной мембраны сливаются, образуя ядерную мембрану;
  • Переформировка ЭПР — части ЭПР, содержащие абсорбированные белки ядерной мембраны, покрывают ядерное пространство, формируя закрытую ядерную мембрану.
  • Альбертс Б., Джонсон А., Льюис Д. и др. . Молекулярная биология клетки. В 3 томах. Т. 1. — М. — Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — 808 с. — ISBN 978-5-4344-0112-8.

ru.wikipedia.org

Биологическая роль мембранных белков

Будущее медицины – персонифицированные методы избирательного воздействия на отдельные системы клетки, которые ответственны за развитие и течение конкретного заболевания. Основным классом терапевтических мишеней при этом являются мембранные белки клетки как структуры, ответственные за обеспечение непосредственной передачи сигналов в клетку. Уже сегодня почти половина лекарств воздействуют именно на клеточные мембраны, и дальше их будет только больше. Знакомству с биологической ролью мембранных белков посвящена данная статья.

Структура и функции клеточной мембраны

Из школьного курса многие помнят устройство структурной единицы организма – клетки. Особое место в устройстве живой клетки играет плазмалемма (мембрана), которая отделяет внутриклеточное пространство от окружающей ее среды. Таким образом, главная ее функция – создание барьера между клеточным содержимым и внеклеточным пространством. Но это не единственная функция плазмолеммы. Среди других функций мембраны, связанных в первую очередь с мембранными белками, выделяют:

  • Защитную (связывание антигенов и предупреждение их проникновения в клетку).
  • Транспортную (обеспечение обмена веществ между клеткой и средой).
  • Сигнальную (встроенные рецепторные белковые комплексы обеспечивают раздражимость клетки и ее ответ на различные воздействия извне).
  • Энергетическую - преобразование разных форм энергий: механической (жгутики и реснички), электрической (нервный импульс) и химической (синтез молекул аденозинтрифосфорной кислоты).
  • Контактную (обеспечение связи между клетками при помощи десмосом и плазмодесм, а также складок и выростов плазмолеммы).

Строение мембран

Мембрана клетки – это двойной слой липидов. Бислой образуется благодаря наличию в молекуле липидов двух частей с разными свойствами – гидрофильного и гидрофобного участка. Наружный слой мембран образован полярными «головками» с гидрофильными свойствами, а гидрофобные «хвосты» липидов обращены внутрь бислоя. Кроме липидов, в структуру мембран входят белки. В 1972 году американские микробиологи С.Д. Сингер (S. Jonathan Singer) и Г.Л. Николсон (Garth L. Nicolson) предложили жидкостно-мозаичную модель строения мембраны, согласно которой, мембранные белки «плавают» в бислое липидов. Эта модель была дополнена немецким биологом Каем Зимонсом (1997) в части образования определенных, более плотных участков с ассоциированными белками (липидных рафтов), которые свободно дрейфуют в бислое мембраны.

Пространственная структура мембранных белков

В различных клетках соотношение липидов и белков различно (от 25 до 75% белков в пересчете на сухую массу), и расположены они неравномерно. По расположению белки могут быть:

  • Интегральными (трансмембранными) – встроенными в мембрану. При этом они пронизывают мембрану, иногда неоднократно. Их внеклеточные участки часто несут цепи олигосахаридов, формируя гликопротеиновые кластеры.
  • Периферическими – расположены преимущественно на внутренней стороне мембран. Связь с липидами мембраны обеспечивается за счет водородных обратимых связей.
  • Заякоренными – преимущественно расположены с наружной стороны клетки и «якорем», удерживающим их на поверхности, является молекула липида, погруженная в бислой.

Функционал и обязанности

Биологическая роль мембранных белков многообразна и зависит от их структуры и расположения. Среди них выделяют рецепторные белки, канальные (ионные и порины), транспортеры, моторы и структурные белковые кластеры. Все виды мембранных белков-рецепторов в ответ на какое-либо воздействие меняют свою пространственную структуру и формируют ответ клетки. Например, рецептор инсулина регулирует поступление глюкозы внутрь клетки, а родопсин в чувствительных клетках органа зрения запускает каскад реакций, что приводят к возникновению нервного импульса. Роль мембранных белков-каналов заключается в транспорте ионов и поддержании разницы их концентраций (градиента) между внутренней и внешней средой. Например, натрий-калиевые насосы обеспечивают обмен соответствующих ионов и активный транспорт веществ. Порины – сквозные белки – участвуют в переносе молекул воды, транспортеры – в переносе некоторых веществ против градиента концентраций. У бактерий и простейших движение жгутиков обеспечивают молекулярные белковые моторы. Структурные мембранные белки поддерживают саму мембрану и обеспечивают взаимодействие других белков плазмолеммы.

Белки для мембраны, мембрана для белков

Мембрана - это динамическая и очень активная среда, а не инертная матрица для белков, которые в ней расположены и работают. Она существенно влияет на работу мембранных белков, а липидные рафты, перемещаясь, формируют новые ассоциативные связи белковых молекул. Многие белки просто не работают без партнеров, и межмолекулярное их взаимодействие обеспечивается характером липидного слоя мембран, структурная организация которого, в свою очередь, зависит от структурных белков. Нарушения в этом тонком механизме взаимодействия и взаимозависимости приводят к нарушению функций мембранных белков и целому ряду заболеваний, таких как диабет и злокачественные опухоли.

Структурная организация

Современные представления о структуре и строении мембранных белков основаны на том, что в мембранной периферической части большинство из них состоит редко из одной, чаще из нескольких ассоциированных олигомеризующихся альфа-спиралей. Причем именно такая структура является залогом выполнения функции. Однако именно классификация белков по типам структур может принести еще немало сюрпризов. Более чем из ста описанных белков наиболее изученным по типу олигомеризации мембранным белком является гликофорин А (белок эритроцитов). Для трансмембранных белков ситуация выглядит сложнее – описан лишь один белок (фотосинтетический реакционный центр бактерий - бактериородопсин). Учитывая высокую молекулярную массу мембранных белков (10-240 тысяч дальтон), у молекулярных биологов широкое поле для исследований.

Сигнальные системы клетки

Среди всех белков плазмолеммы особое место принадлежит рецепторным белкам. Именно они регулируют, какие сигналы поступят в клетку, а какие нет. У всех многоклеточных и некоторых бактерий передача информации осуществляется посредством специальных молекул (сигнальных). Среди этих сигнальных агентов выделяют гормоны (белки, специально секретируемые клетками), небелковые образования и отдельные ионы. Последние могут выделяться при повреждении соседних клеток и запускать каскад реакций в виде болевого синдрома, главного защитного механизма организма.

Мишени для фармакологии

Именно мембранные белки являются главными мишенями применения фармакологии, так как именно они и есть те точки, через которые идет большинство сигналов. «Нацелить» лекарственный препарат, обеспечить его высокую селективность – вот главная задача при создании фармакологического средства. Избирательное воздействие только на конкретный тип или даже подтип рецептора – это влияние только на один тип клеток организма. Такое селективное воздействие может, например, отличить опухолевые клетки от нормальных.

Лекарства будущего

Свойства и особенности мембранных белков уже сегодня используются в создании лекарств нового поколения. Эти технологии основаны на создании модульных фармакологических структур из нескольких молекул или наночастиц, «сшитых» друг с другом. «Нацеливающая» часть узнает на мембране клетки определенные рецепторные белки (например, связанные с развитием онкологических заболеваний). К этой части добавляется разрушающий мембрану агент или блокатор процессов производства белков в клетке. Развивающийся апоптоз (программа собственной гибели) или другой механизм каскада внутриклеточных превращений приводит к желаемому результату воздействия фармакологического средства. В результате мы имеем лекарство с минимумом побочных эффектов. Первые такие лекарства по борьбе с раком уже проходят клинические испытания и вскоре станут залогом высокоэффективной терапии.

Структурная геномика

Современная наука о белковых молекулах все интенсивнее переходит на информационные технологии. Экстенсивный путь исследований – изучить и описать все, что можно, сохранить данные в компьютерных базах и потом искать пути применения данных знаний – такова цель современных молекулярных биологов. Всего лишь пятнадцать лет назад стартовал глобальный проект «геном человека», и мы уже имеем секвенированную карту генов человека. Второй проект, цель которого - определить пространственное строение всех «ключевых белков», - структурная геномика – пока далек от завершения. Пространственная структура определена пока только для 60 тысяч более чем из пяти миллионов белков человека. И пусть пока ученые вырастили лишь светящихся поросят и холодоустойчивые помидоры с геном лосося, технологии структурной геномики остаются этапом научного познания, практическое приложение которого не заставит долго себя ждать.

fb.ru

Внешняя бактериальная мембрана — Википедия

Подробная схема строения клеточной стенки грамотрицательных бактерий

Вне́шняя бактериа́льная мембра́на, или нару́жная бактериа́льная мембра́на (англ. bacterial outer membrane) — биологическая мембрана, располагающаяся поверх слоя пептидогликана у грамотрицательных бактерий. По составу она отличается от внутренней, клеточной мембраны. На её поверхности находятся липополисахариды, являющиеся антигенами грамотрицательных патогенных бактерий.

Строение липополисахарида

Внешняя мембрана, как и клеточная, имеет толщину 7—8 нм[1]. Подобно клеточной мембране, внешняя мембрана представляет собой липидный бислой, который состоит из фосфолипидов, преимущественно фосфатидилэтаноламина, фосфатидилглицерола[en] и дифосфатидилглицерола. Однако во внешней мембране фосфолипиды распределены между слоями несимметрично: внешний лист мембраны образован преимущественно липополисахаридами. Исключениями являются цианобактерии и виды рода Neisseria, у которых во внешнем слое мембраны одновременно присутствуют фосфолипиды и липоолигосахариды. В структуре липополисахарида можно выделить четыре структурных блока:

Внешняя мембрана богата белками, их обозначают Omp[en] (от англ. outer membrane protein). Белки могут покрывать до половины поверхности внешней мембраны. Белки Omp подразделяют на главные и минорные. Главные Omp-белки синтезируются постоянно; к их числу относятся липопротеин Брауна, липопротеины спирохет, OmpA и неспецифический порин OmpF[3].

В структурно-функциональном отношении все белки внешней мембраны можно подразделить на три группы:

Иногда на препаратах обнаруживаются зоны контакта клеточной и внешней мембран. Такие участки называют контактами Байера. Вероятно, непосредственного контакта между мембранами не происходят, и они связываются друг с другом специальными белками в образующейся на месте контакте бреши в пептидогликановом слое[4].

Во внешней мембране имеются постоянно открытые ионные каналы, из-за чего на ней не может поддерживаться постоянный электрохимический градиент ионов натрия или протонов, поэтому внешняя мембрана не принимает участия в метаболизме клетки. Она также не имеет отношения к биосинтезу белков, липидов и полисахаридов, хотя может быть задействована в их секреции. Однако во внешней мембране находятся некоторые ферменты — пермеазы, гидролазы, иногда — окислительные ферменты[en], такие как марганец-оксидаза[1].

Функции внешней мембраны в бактериальной клетке очень разнообразны. Она совместно с клеточной мембраной образует периплазматическое пространство (периплазму), наряду с клеточной стенкой придаёт жёсткость клетке, служит фильтром, который не даёт попасть в периплазму крупным гидрофильным молекулам и задерживает гидрофобные молекулы. Она не даёт покинуть клетку многим ферментам периплазмы, участвует в поступлении в клетку питательных веществ, а также выделении наружу антибиотиков, токсинов, метаболитов и разнообразных белков. Внешняя мембрана опосредует неспецифичную адгезию бактериальных клеток, взаимодействует с бактериофагами, поверхностными рецепторами как прокариотических, так и эукариотических клеток, а также антителами. Благодаря внешней мембране жёлчные кислоты и другие амфифильные детергенты, а также антибиотики действуют на грамотрицательные бактерии слабее, чем на грамположительные[5]. Липоолигосахариды — важнейшие антигены патогенных грамотрицательных бактерий, их также называют эндотоксинами[3].

Механизмы, которые обеспечивают доставку компонентов внешней мембраны на поверхность клетки, до конца не ясны. Компоненты липополисахарида — липид A и O-антигеновые повторяющиеся единицы — синтезируются на цитоплазматической стороне клеточной мембраны и доставляются наружу независимо двумя специализированными транспортными системами, а именно, переносчиком O-антигена Wzx (RfbX) и ABC-транспортера[en] MsbA, который перемещает липид A с внутреннего липидного слоя клеточной мембраны в наружный[6][7][8][9][10]. Полимеризация единиц O-антигена происходит в периплазматическом пространстве специализированной полимеразой Wzy, и полимерный фрагмент далее присоединяется к коровому липиду A лигазой WaaL, образуя липополисахарид[11][12]. Аппарат переноса молекул липополисахарида наружу клетки состоит из белков LptA, LptB, LptC, LptD, LptE. Для пяти из них удалось установить, в каких частях клетки они находятся, что может помочь разобраться в том, как функционирует аппарат сборки и выделения молекул липополисахарида[12]. Известно, что LptC переносит липополисахарид с клеточной мембраны во внешнюю[12]. LptE формирует комплекс с LptD, который обеспечивает встраивание молекул липополисахарида во внешнюю мембрану[12][13][14].

От наружной мембраны могут отпочковываться везикулы (везикулы бактериальной внешней мембраны) диаметром от 20 до 500 нм. Образование везикул может быть связано с ростом бактериальной клетки, они могут служить средством доставки ферментов и прочих белков, например, патогенные бактерии могут транспортировать в составе везикул факторы вирулентности[en]. Например, у Pseudomonas aeruginosa в составе везикул наружной мембраны в числе прочих белков выделяется β-лактамаза, разрушающая пенициллин[15].

  1. 1 2 Пиневич, 2006, с. 240.
  2. ↑ Пиневич, 2006, с. 241.
  3. 1 2 3 Пиневич, 2006, с. 250.
  4. ↑ Пиневич, 2006, с. 257.
  5. ↑ Пиневич, 2006, с. 240—241.
  6. Feldman M. F., Marolda C. L., Monteiro M. A., Perry M. B., Parodi A. J., Valvano M. A. The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. (англ.) // The Journal Of Biological Chemistry. — 1999. — 3 December (vol. 274, no. 49). — P. 35129—35138. — PMID 10574995. [исправить]
  7. Liu D., Cole R. A., Reeves P. R. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. (англ.) // Journal Of Bacteriology. — 1996. — April (vol. 178, no. 7). — P. 2102—2107. — PMID 8606190. [исправить]
  8. Doerrler W. T., Reedy M. C., Raetz C. R. An Escherichia coli mutant defective in lipid export. (англ.) // The Journal Of Biological Chemistry. — 2001. — 13 April (vol. 276, no. 15). — P. 11461—11464. — doi:10.1074/jbc.C100091200. — PMID 11278265. [исправить]
  9. Polissi A., Georgopoulos C. Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. (англ.) // Molecular Microbiology. — 1996. — June (vol. 20, no. 6). — P. 1221—1233. — PMID 8809774. [исправить]
  10. Zhou Z., White K. A., Polissi A., Georgopoulos C., Raetz C. R. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. (англ.) // The Journal Of Biological Chemistry. — 1998. — 15 May (vol. 273, no. 20). — P. 12466—12475. — PMID 9575204. [исправить]
  11. Raetz C. R., Whitfield C. Lipopolysaccharide endotoxins. (англ.) // Annual Review Of Biochemistry. — 2002. — Vol. 71. — P. 635—700. — doi:10.1146/annurev.biochem.71.110601.135414. — PMID 12045108. [исправить]
  12. 1 2 3 4 Sperandeo P., Lau F. K., Carpentieri A., De Castro C., Molinaro A., Dehò G., Silhavy T. J., Polissi A. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. (англ.) // Journal Of Bacteriology. — 2008. — July (vol. 190, no. 13). — P. 4460—4469. — doi:10.1128/JB.00270-08. — PMID 18424520. [исправить]
  13. Wu T., McCandlish A. C., Gronenberg L. S., Chng S. S., Silhavy T. J., Kahne D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2006. — 1 August (vol. 103, no. 31). — P. 11754—11759. — doi:10.1073/pnas.0604744103. — PMID 16861298. [исправить]
  14. Bos M. P., Tefsen B., Geurtsen J., Tommassen J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2004. — 22 June (vol. 101, no. 25). — P. 9417—9422. — doi:10.1073/pnas.0402340101. — PMID 15192148. [исправить]
  15. ↑ Пиневич, 2006, с. 256.
  • Пиневич А. В. Микробиология. Биология прокариотов: в 3 т. — СПб.: Издательство С.-Петербургского университета, 2006. — Т. I. — 352 с. — ISBN 5-288-04057-5.

ru.wikipedia.org

Мембранные белки — Карта знаний

  • К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Около 25 % всех белков являются мембранными.

Источник: Википедия

Связанные понятия

Интегральный мембранный белок (ИМБ, IMP или просто интегральный белок) — один из типов мембранных белков, которые прочно связаны с цитоплазматической мембраной (интегрированы). Они составляют значительную часть белков, закодированных в геноме любого организма. Интегральные белки могут быть погружены в мембрану полностью, а иногда даже пронизывают её насквозь. В этом смысле, все трансмембранные белки являются интегральными белками, но не все интегральные — трансмембранными. Связь интегральных белков... Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут... Внутриклеточная сортировка белков (англ. protein sorting, protein targeting) — процессы мечения и последующего транспорта белков в живых клетках, которые приводят к попаданию белков в определённые компартменты клетки. Кавео́лы (от лат. caveola — «малая пещера») — небольшие (размером 50—100 нм) колбообразные впячивания плазматической мембраны в клетках позвоночных многих типов, в особенности эндотелиальных клетках (где они и были впервые обнаружены), адипоцитах и альвеолоцитах I типа (кавеолы могут составлять 30—70 % мембран этих клеток). В состав кавеол входит ключевой белок — кавеолин, а также такие липиды, как холестерин и сфинголипиды. Кавеолы участвуют в передаче клеточных сигналов, эндоцитозе, онкогенезе... Органеллы (от орган и др.-греч. εἶδος — вид), — постоянные компоненты клетки, жизненно необходимые для её существования. Органеллы располагаются во внутренней части клетки — цитоплазме, в которой, наряду с органеллами, могут находиться различные включения.

Упоминания в литературе

Белки осуществляют большую часть мембранных функций: многие мембранные белки являются рецепторами, другие ферментами, третьи переносчиками. Белки занимают разное положение в бислое, составляя более 50 % от массы мембраны. Некоторые белки прикреплены к мембране с помощью специальных компонентов цитоскелета (интегральные белки), другие передвигаются к поверхностям мембраны (трансмембранные белки – белки-переносчики, белки мембранных насосов, белки ионных каналов). Все биологические мембраны представляют собой двойной слой фосфолипидов, гидрофобные концы которых обращены внутрь, а гидрофильные головки – наружу. В него на различную глубину погружены белки, некоторые из которых пронизывают мембрану насквозь. Белки способны перемещаться в плоскости мембраны. Мембранные белки выполняют различные функции: транспорт различных молекул; получение и преобразование сигналов из окружающей среды; поддержание структуры мембран. Наиболее важное свойство мембран – избирательная проницаемость [5, 6]. Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляют трансплантационные антигены или антигены гистосовместимости. Наиболее вероятной первопричиной иммунобластной лимфомы является ВЭБ, ДНК которого постоянно обнаруживается в клетках опухоли. Установлена способность латентного мембранного белка вируса присоединяться к клеткам, давая сигнал к их делению.

Связанные понятия (продолжение)

Трансмембранные рецепторы — мембранные белки, которые размещаются, и работают не только во внешней клеточной мембране, но и в мембранах компартментов и органелл клетки. Связывание с сигнальной молекулой (гормоном или медиатором) происходит с одной стороны от мембраны, а клеточный ответ формируется на другой стороне от мембраны. Таким образом, они играют уникальную и важную роль в межклеточных связях и передаче сигнала. Эндомембра́нная систе́ма — система разнообразных мембран, располагающихся в цитоплазме эукариотической клетки (исключая мембраны митохондрий, пероксисом и хлоропластов). Эти мембраны делят клетку на функциональные компартменты, или органеллы. К компонентам эндомембранной системы относят ядерную оболочку, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, везикулы, вакуоли и клеточную мембрану. Мембраны эндомембранной системы составляют единую функциональную единицу и либо непосредственно соединяются... Гликозилфосфатидилинозитол (ГФИ-якорь, GPI anchor) — это гликолипид, который может присоединяться к C-концу белка в процессе посттрансляционной модификации. Он состоит из фосфатидилинозитольной группы, соединенный углеводным связующим звеном (глюкозамин и манноза, гликозидно связанным с остатком инозитола) с C-концевой аминокислотой зрелого белка. Две жирные кислоты, составляющие фосфатидил-инозитоловую группу, заякоривают белок в клеточной мембране. Ретроме́р — специализированный белковый комплекс, который собирается на эндосомах и образует везикулы, которые возвращают некоторые белки, например, рецепторы кислых гидролаз в аппарат Гольджи (точнее, транс-сеть Гольджи). Синаптобревин (англ. synaptobrevin) — небольшой трансмембранный белок секреторных везикул; компонент белкового комплекса SNARE, осуществляющего конечные стадии экзоцитоза нейромедиаторов в синапс. Синаптобревин относится к семейству везикуло-ассоциированных мембранных белков (англ. vesicle associated membrane protein, VAMP). Белковая субъединица в структурной биологии — полипептид, который вместе с другими компонентами собирается в мультимерный или олигомерный белковый комплекс. Многие природные ферменты и другие белки состоят из нескольких белковых субъединиц. Бактериа́льные систе́мы секре́ции (англ. Bacterial secretion systems) — белковые комплексы, расположенные в клеточной мембране бактерий и служащие для секреции различных белков. В частности, их используют патогенные бактерии для выделения факторов вирулентности. На основании состава, структуры и действия системы секреции делят на несколько типов. Наиболее фундаментальные различия наблюдаются между системами секреции грамположительных и грамотрицательных бактерий. Существует по меньшей мере шесть... Пальмитирование — это ковалентное присоединение к белку остатка одной из высших жирных кислот с образованием тиоэфирной связи. Чаще всего происходит присоединение пальмитиновой кислоты (откуда и название) к сера-содержащей аминокислоте, чаще всего цистеину, реже к серину или треонину. Обычно пальмитированию подвергаются мембранные белки, например молекулы поверхностных рецепторов. Роль пальмитирования в изменении функциональности того или иного белка зависит от конкретного белка. Протеинкина́зы — подкласс ферментов киназ (фосфотрансфераз). Протеинкиназы модифицируют другие белки путём фосфорилирования остатков аминокислот, имеющих гидроксильные группы (серин, треонин и тирозин) или гетероциклической аминогруппы гистидина. Метаболо́н — надмолекулярный процесс ферментов, катализирующих последовательные стадии метаболического пути и структурных элементов клетки. В состав метаболона включается не только комплекс ферментов, выполняющих определённую метаболическую функцию, но и опорный участок клеточной структуры (участок мембраны, цитоскелет и т.п.), на котором комплекс адсорбирован. Пример такого метаболона - комплекс гликолитических ферментов вместе с белками в мембране эритроцитов или актин в составе цитоскелета. Мембранные контакты (сайты мембранных контактов, англ. membrane contact sites (MCS)) — места сближения мембран двух органелл. Межмембранное расстояние в таких сайтах 10-30 нм, где минимум соответствует размеру одного белка. Эти сайты принимают участие в таких клеточных процессах, как передача сигналов, прохождение ионов, и невезикулярный оборот липидов между клеточными компартментами. Везикулярный транспорт лучше изучен, прямым контактам мембран между органеллами уделялось меньше внимания. Особую... Толл-подобные рецепторы (англ. Toll-like receptor, TLR; от нем. toll — большой, восхитительный) — класс клеточных рецепторов с одним трансмембранным фрагментом, которые распознают консервативные структуры микроорганизмов и активируют клеточный иммунный ответ. Играют ключевую роль во врождённом иммунитете. Например, толл-подобный рецептор 4 узнаёт и связывается с консервативной структурой клеточной стенки грамотрицательных бактерий — липополисахаридом. Название получили благодаря сходству с белком... Флагеллин — бактериальный белок, который способен самоорганизовываться в полые цилиндрические структуры, образующие филаменты бактериальных жгутиков. Это главный компонент жгутиков и представлен в больших количествах у всех жгутиковых бактерий. Флагеллин является лигандом для рецептора врождённой иммунной системы TLR5. Рецепторы опознавания паттерна, или образ-распознающие рецепторы, — это белки, присутствующие на поверхности клеток иммунной системы и способные узнавать стандартные молекулярные структуры (паттерны), специфичные для больших групп патогенов. Их также называют рецепторами, опознающими патоген. По сравнению с системой адаптивного иммунитета, такие рецепторы и связанные с ними механизмы иммунной защиты являются эволюционно более древними. Пре-B-клеточный рецептор — рецепторный белковый комплекс, который присутствует на плазматической мембране предшественников B-клеток в течение короткого времени и служит сигналом завершения продуктивной соматической рекомбинации генов тяжёлых цепей иммуноглобулинов. Хотя пре-В-клеточный рецептор синтезируется в клетке только в течение короткого промежутка времени, это событие, тем не менее, является важной контрольной точкой в развитии В-лимфоцита. Его присутствие на мембране показывает, что клетки... Тилакоиды — ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза. Слово «тилакоид» происходит от греческого слова thylakos, означающего «мешочек». Тилакоиды состоят из мембраны, окружающей просвет тилакоида. Тилакоиды хлоропластов часто имеют структуру, напоминающую стопку дисков. Эти стопки называют гранами (от лат. Granum — стопка монет). Граны соединены межграновыми или строматическими тилакоидами (ламеллами) в единое... TLR7 (толл-подобный рецептор 7) — мембранный белок, входящий в группу толл-подобных рецепторов, обеспечивающих функционирование врождённого иммунитета. Рецептор локализуется в эндосомах и распознаёт одноцепочечные молекулы РНК, являясь наряду с TLR3 и TLR9 компонентом анти-вирусной системы защиты организма. Открыт в 2000 году. 5'АМФ-активируемая протеинкиназа (АМФК, англ. AMP activated protein kinase, AMPK) — клеточная протеинкиназа, контролирующая энергетический баланс клетки. Активируется при значительном потреблении энергии клетки (например, при физической нагрузке) и нарастании внутриклеточного уровня АМФ. В результате активации АМФК клетка переходит в энергосберегающее состояние (в том числе блокирует синтез жирных кислот и активирует их окисление). АМФК представляет собой гетеротример, который включает 3 субъединицы... Доставка генов (англ. gene delivery) — процесс доставки целевых генов в ядро клетки-мишени. Ретикулоны (англ. reticulon, RTN - у позвоночных; у других эукариотов - ретикулоно-подобные белки, англ. reticulon-like proteins, RTNL) - семейство эволюционно-консервативных белков, преимущественно обнаруживаемых в эндоплазматическом ретикулуме и предположительно играющих роль в передвижении молекул между ретикулумом и комплексом Гольджи, формировании везикул, морфогенезе мембраны, однако этим их функции не ограничиваются, поскольку взаимодействия ретикулонов исследованы не до конца. Так, ретикулон... Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках эукариот, причем в клетках прокариот обнаружены гомологи всех белков цитоскелета эукариот. Цитоскелет — постоянная структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление. Молекула клеточной адгезии эпителия (англ. Epithelial cell adhesion molecule; EpCAM, CD326) — мембранный белок, молекула клеточной адезии. Опосредует Ca2+-независимую межклеточную адгезию в эпителии. EpCAM участвует в переносе сигнала, клеточной миграции, пролиферации и дифференцировке.Кроме этого, EpCAM имеет онкогенный потенциал, т. к. может усливать действие таких факторов, как c-myc, e-fabp и циклинов A и E. Благодаря специфической экспрессии белка исключительно в эпителии и опухолях эпителиального... Гликосо́ма (англ. Glycosome) — органелла, окружённая мембраной и содержащая ферменты гликолиза. Термин был введён Скотом и Стиллом в 1968 году, когда они показали, что гликоген, содержащийся в клетке, есть не статичная, а динамичная молекула. Гликосома имеется у нескольких видов протистов, а именно у ряда представителей класса кинетопластид (Kinetoplastea), среди которых есть возбудители таких болезней человека, как сонная болезнь, болезнь Шагаса и лейшманиоз. Органелла окружена одной мембраной и... Спектрин — это белок цитоскелета, который выстилает внутреннюю сторону плазматической мембраны многих типов клеток. Спектрин формирует длинные молекулы структурной сетки и играет важную роль в поддержании целостности клеточной мембраны и структуры цитоскелета. Как показала криоэлектронная томография, формируемая с участием спектрина сетка имеет гетерогенную структуру, которая меняется при растяжении клеточной мембраны.В определенных случаях черепно-мозговых травм, таких как диффузное аксональное... Протеасо́ма (от англ. protease — протеиназа и лат. soma — тело) — многобелковый комплекс, разрушающий ненужные или дефектные белки при помощи протеолиза (химической реакции, при которой происходит разрыв пептидных связей) до коротких пептидов (4—25 аминокислотных остатков). Эти пептиды затем могут быть расщеплены до отдельных аминокислот. Протеасомы присутствуют в клетках эукариот, архей и некоторых бактерий. В эукариотических клетках протеасомы содержатся и в ядре, и в цитоплазме. Деградация... Аппара́т (ко́мплекс) Го́льджи — мембранная структура эукариотической клетки, органелла, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Аппарат Гольджи назван в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1898 году. Адаптины (англ. adaptin) — группа внутриклеточных белков, участвующих в везикулярном транспорте. Адаптины формируют тетрамерные адапторные белковые комплексы. Существует 4 типа адапторных комплексов, обозначающихся AP-1, AP-2, AP-3 и AP-4. Они связываются с определёнными рецепторами клеточной мембраны. С другой стороны эти адапторные комплексы ассоциируют клатрин, привязывая таким образом клатрин к мембране. После формирования клатриновой везикулы АТФазы семейства hsp70 участвуют в диссоциации клатрино-адаптиновой... Клеточный рецептор — молекула (обычно белок или гликопротеид) на поверхности клетки, клеточных органелл или растворенная в цитоплазме. Специфично реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определённого химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов. Принцип компартментализации клеток эукариот постулирует, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами — митохондрии, хлоропласты, пероксисомы, лизосомы, эндоплазматический ретикулум, ядро клетки и аппарат Гольджи. Внутри ряда компартментов (в том числе ядра) выделяются также субкомпартменты, различающиеся по форме и функциям.

Подробнее: Компартментализация

Вне́шняя бактериа́льная мембра́на, или нару́жная бактериа́льная мембра́на (англ. bacterial outer membrane) — биологическая мембрана, располагающаяся поверх слоя пептидогликана у грамотрицательных бактерий. По составу она отличается от внутренней, клеточной мембраны. На её поверхности находятся липополисахариды, являющиеся антигенами грамотрицательных патогенных бактерий. Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды. Регуляторная функция белков ― осуществление белками регуляции процессов в клетке или в организме, что связано с их способностью к приёму и передаче информации. Действие регуляторных белков обратимо и, как правило, требует присутствия лиганда. Постоянно открывают всё новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть. Перфорины — цитотоксические белки, содержащиеся в гранулах Т-лимфоцитов и NK-лимфоцитов (естественных киллеров). Рибосо́ма — важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоят из большой и малой субъединиц. ДНК-метилтрансфера́зы (ДНК-метилазы, англ. DNA methyltransferase, DNA MTase, DNMT) — группа ферментов, катализирующих метилирование нуклеотидных остатков в составе ДНК. Активность метилтрансфераз, заключающаяся в переносе метильных (Ch4—) групп на азотистое основание цитозин в составе ДНК, ведет к изменению свойств ДНК, при этом изменяется активность, функции соответствующих генов, а также пространственная структура нуклеиновой кислоты (конформация).

Подробнее: ДНК-метилтрансфераза

Экзоцитоз (от др.-греч. ἔξω «вне, снаружи» и κύτος «клетка») — у эукариот клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом. Гликопротеи́ны (устар. гликопротеиды) — это двухкомпонентные белки, в которых белковая (пептидная) часть молекулы ковалентно соединена с одной или несколькими группами гетероолигосахаридов. Кроме гликопротеинов существуют также протеогликаны и гликозаминогликаны. Микроне́мы — клеточные органеллы, свойственные простейшим из типа Apicomplexa. Расположены в передней трети тела организма, окружены мембраной, при электронной микроскопии можно видеть, что они наполнены электронно-плотным содержимым из-за высокого содержания белка. Они являются специализированными секреторными органеллами, участвующими в проникновении в клетку хозяина. Эпитоп (англ. epitope), или антигенная детерминанта — часть макромолекулы антигена, которая распознаётся иммунной системой (антителами, B-лимфоцитами, T-лимфоцитами). Часть антитела, распознающая эпитоп, называется паратопом. Хотя обычно эпитопы относятся к чужеродным для данного организма молекулам (белкам, гликопротеинам, полисахаридам и др.), участки собственных молекул, распознаваемые иммунной системой, также называются эпитопами. Коллектины — растворимые рецепторы опознавания паттерна, принадлежащие к одному из суперсемейств Са-зависимых лектинов ( типа С), содержащих коллагеноподобный домен. В настоящее время идентифицировано восемь коллектинов человека, в том числе: лектин, связывающий маннозу, два белка сурфактанта, A и D, а также коллектин 1 печени (CL-L1), коллектин 1 плаценты (CL-P1), конглютинин, 43-кДа коллектин (CL-43) и 46-кДа коллектин (CL-46).

kartaslov.ru


Смотрите также